Abstract

Measurements of the backscattering from the lower atmosphere of linearly polarized ruby lidar pulses at 694 nm are described. A four-channel receiver provides simultaneous measurements of the four components of the Stokes vector of the scattered radiation. These data are used to obtain information on the polarization state of the scattering and its dependence on atmospheric conditions. Results are presented and discussed for clear air, hazes, and several cloud types. In water droplet clouds some rotation of the plane of polarization and changes in ellipticity are noted in the backscattered wave. Linear polarization of the penetrating lidar beam is strongly preserved even in quite dense clouds. In view of the increased complexity of the four-component measurement technique it would appear that in such cases two-channel measurements of δ would be the most efficient lidar approach.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Pal, A. I. Carswell, Appl. Opt.1530 (1973).
    [CrossRef] [PubMed]
  2. W. R. McNeil, A. I. Carswell, Appl. Opt. 14, 2158 (1975).
    [CrossRef] [PubMed]
  3. S. R. Pal, A. I. Carswell, Appl. Opt. 15, 1990 (1976).
    [CrossRef] [PubMed]
  4. D. Clarke, J. F. Grainger, Polarized Light and Optical Measurements (Pergamon, Oxford, 1971).
  5. F. Perrin, J. Chem. Phys. 10, 415 (1942).
    [CrossRef]
  6. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  7. M. E. Born, E. Wolf, Principles of Optics (Pergamon, London, 1974).
  8. K. Sassen, J. Appl. Meteorol. 15, 292 (1976).
    [CrossRef]
  9. A. I. Carswell, J. S. Ryan, S. R. Pal, “Atmospheric Aerosols: Their Optical Properties and Effects,” NASA CP-2004 (December1976).
  10. S. R. Pal, A. I. Carswell, J. Appl. Meteorol. 16, 70 (1977).
    [CrossRef]
  11. A. Ye Tyabotov, Tr. Tsentr. Aerol. Obs. 84, 94 (1967);JPRS 50172 (March1970).

1977 (1)

S. R. Pal, A. I. Carswell, J. Appl. Meteorol. 16, 70 (1977).
[CrossRef]

1976 (2)

1975 (1)

1973 (1)

S. R. Pal, A. I. Carswell, Appl. Opt.1530 (1973).
[CrossRef] [PubMed]

1967 (1)

A. Ye Tyabotov, Tr. Tsentr. Aerol. Obs. 84, 94 (1967);JPRS 50172 (March1970).

1942 (1)

F. Perrin, J. Chem. Phys. 10, 415 (1942).
[CrossRef]

Born, M. E.

M. E. Born, E. Wolf, Principles of Optics (Pergamon, London, 1974).

Carswell, A. I.

S. R. Pal, A. I. Carswell, J. Appl. Meteorol. 16, 70 (1977).
[CrossRef]

S. R. Pal, A. I. Carswell, Appl. Opt. 15, 1990 (1976).
[CrossRef] [PubMed]

W. R. McNeil, A. I. Carswell, Appl. Opt. 14, 2158 (1975).
[CrossRef] [PubMed]

S. R. Pal, A. I. Carswell, Appl. Opt.1530 (1973).
[CrossRef] [PubMed]

A. I. Carswell, J. S. Ryan, S. R. Pal, “Atmospheric Aerosols: Their Optical Properties and Effects,” NASA CP-2004 (December1976).

Clarke, D.

D. Clarke, J. F. Grainger, Polarized Light and Optical Measurements (Pergamon, Oxford, 1971).

Grainger, J. F.

D. Clarke, J. F. Grainger, Polarized Light and Optical Measurements (Pergamon, Oxford, 1971).

McNeil, W. R.

Pal, S. R.

S. R. Pal, A. I. Carswell, J. Appl. Meteorol. 16, 70 (1977).
[CrossRef]

S. R. Pal, A. I. Carswell, Appl. Opt. 15, 1990 (1976).
[CrossRef] [PubMed]

S. R. Pal, A. I. Carswell, Appl. Opt.1530 (1973).
[CrossRef] [PubMed]

A. I. Carswell, J. S. Ryan, S. R. Pal, “Atmospheric Aerosols: Their Optical Properties and Effects,” NASA CP-2004 (December1976).

Perrin, F.

F. Perrin, J. Chem. Phys. 10, 415 (1942).
[CrossRef]

Ryan, J. S.

A. I. Carswell, J. S. Ryan, S. R. Pal, “Atmospheric Aerosols: Their Optical Properties and Effects,” NASA CP-2004 (December1976).

Sassen, K.

K. Sassen, J. Appl. Meteorol. 15, 292 (1976).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Wolf, E.

M. E. Born, E. Wolf, Principles of Optics (Pergamon, London, 1974).

Ye Tyabotov, A.

A. Ye Tyabotov, Tr. Tsentr. Aerol. Obs. 84, 94 (1967);JPRS 50172 (March1970).

Appl. Opt. (3)

J. Appl. Meteorol. (2)

S. R. Pal, A. I. Carswell, J. Appl. Meteorol. 16, 70 (1977).
[CrossRef]

K. Sassen, J. Appl. Meteorol. 15, 292 (1976).
[CrossRef]

J. Chem. Phys. (1)

F. Perrin, J. Chem. Phys. 10, 415 (1942).
[CrossRef]

Tr. Tsentr. Aerol. Obs. (1)

A. Ye Tyabotov, Tr. Tsentr. Aerol. Obs. 84, 94 (1967);JPRS 50172 (March1970).

Other (4)

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

M. E. Born, E. Wolf, Principles of Optics (Pergamon, London, 1974).

A. I. Carswell, J. S. Ryan, S. R. Pal, “Atmospheric Aerosols: Their Optical Properties and Effects,” NASA CP-2004 (December1976).

D. Clarke, J. F. Grainger, Polarized Light and Optical Measurements (Pergamon, Oxford, 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Sample plots of δ, χ, and for a clear urban atmosphere.

Fig. 2
Fig. 2

Plots of δ, χ,∊, and the total intensity I for lidar returns from a low cloud layer.

Fig. 3
Fig. 3

Plots of δ, χ,∊, and I for a cumulus cloud.

Fig. 4
Fig. 4

Plots of δ, χ, and for a thick altostratus layer.

Fig. 5
Fig. 5

Profile of the degree of polarization P in several cloud layers. Also shown is the intensity curve I for one of the clouds (shown by dotted curves).

Fig. 6
Fig. 6

Polarization parameters for a cirrus cloud. χ and are plotted only as points to avoid confusion from too many overlapping curves.

Fig. 7
Fig. 7

A second set of data from the cloud shown in Fig. 6 taken 10 min later.

Fig. 8
Fig. 8

Polarization parameters from soundings on a hazy urban atmosphere.

Fig. 9
Fig. 9

Polarization parameters from soundings on a hazy day with broken cumulus clouds at 950 m. This sounding was made on the sky between the cloud patches.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I = I 1 + I 2 , Q = I 1 I 2 , U = I 2 I 3 , V = 2 I 4 I ,
[ I p Q U V ] + [ I u 0 0 0 ] = [ I p + I u Q U V ] = [ I Q U V ] ,
tan 2 χ = U / Q and sin 2 β = V / I p ,
P = I p I u + I p = I p I ,
δ = I 2 / I 1 = ( I Q ) / ( I + Q ) .

Metrics