Abstract

A set of deuterium lamps is calibrated as spectral irradiance standards in the 200–350-nm spectral region utilizing both a high accuracy tungsten spectral irradiance standard and a newly developed argon mini-arc spectral radiance standard. The method which enables a transfer from a spectral radiance to a spectral irradiance standard is described. The following characteristics of the deuterium lamp irradiance standard are determined: sensitivity to alignment; dependence on input power and solid angle; reproducibility; and stability. The absolute spectral radiance is also measured in the 167–330-nm region. Based upon these measurements, values of the spectral irradiance below 200 nm are obtained through extrapolation.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Kostkowski, D. E. Erminy, A. T. Hattenburg, Advances in Geophysics (Academic, New York, 1970), Vol. 14, p. 111.
    [CrossRef]
  2. J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Wiley, New York, 1967).
  3. J. Kern, Z. Angew. Phys. 6, 536 (1954).
  4. E. Pitz, Appl. Opt. 8, 225 (1969).
    [CrossRef]
  5. D. Stuck, B. Wende, J. Opt. Soc. Am. 62, 96 (1972).
    [CrossRef]
  6. W. R. Ott, W. L. Wiese, Opt. Eng. 12, 86 (1973).
    [CrossRef]
  7. W. R. Ott, J. D. Bartoe, J. Opt. Soc. Am. 62, 1972 (1972).
  8. D. Einfeld, D. Stuck, K. Behringer, P. Thoma, Z. Naturforsch. Teil A: 31, 1131 (1976).
  9. Y. Nakagawa, F. Ontani, Tokyo J. Ilium. Eng. Inst. Jpn. 56, 678 (1972).
    [CrossRef]
  10. P. J. Key, National Physical Laboratory, Teddington, England; private communication.
  11. R. D. Saunders, The 1973 NBS Scale of Spectral Irradiance (April 1977), National Bureau of Standards, Technical Note 594-13 (Government Printing Office, Washington, D.C., 1977).
  12. Although the solid angle subtended by each source may be slightly different, each is small (≈f/200). Therefore the errors from a noncosine corrected diffuser were estimated to be less than 0.01%.
  13. E. F. Zalewski, J. Opt. Soc. 62, 1372 (1972).
  14. J. M. Bridges, W. R. Ott, Appl. Opt. 16, 367 (1977).
    [CrossRef] [PubMed]
  15. W. R. Ott, K. Behringer, G. Gieres, Appl. Opt. 14, 2121 (1975).
    [CrossRef] [PubMed]
  16. R. D. Saunders, W. R. Ott, Appl. Opt. 15, 827 (1976).
    [CrossRef] [PubMed]

1977

1976

R. D. Saunders, W. R. Ott, Appl. Opt. 15, 827 (1976).
[CrossRef] [PubMed]

D. Einfeld, D. Stuck, K. Behringer, P. Thoma, Z. Naturforsch. Teil A: 31, 1131 (1976).

1975

1973

W. R. Ott, W. L. Wiese, Opt. Eng. 12, 86 (1973).
[CrossRef]

1972

W. R. Ott, J. D. Bartoe, J. Opt. Soc. Am. 62, 1972 (1972).

Y. Nakagawa, F. Ontani, Tokyo J. Ilium. Eng. Inst. Jpn. 56, 678 (1972).
[CrossRef]

E. F. Zalewski, J. Opt. Soc. 62, 1372 (1972).

D. Stuck, B. Wende, J. Opt. Soc. Am. 62, 96 (1972).
[CrossRef]

1969

E. Pitz, Appl. Opt. 8, 225 (1969).
[CrossRef]

1954

J. Kern, Z. Angew. Phys. 6, 536 (1954).

Bartoe, J. D.

W. R. Ott, J. D. Bartoe, J. Opt. Soc. Am. 62, 1972 (1972).

Behringer, K.

D. Einfeld, D. Stuck, K. Behringer, P. Thoma, Z. Naturforsch. Teil A: 31, 1131 (1976).

W. R. Ott, K. Behringer, G. Gieres, Appl. Opt. 14, 2121 (1975).
[CrossRef] [PubMed]

Bridges, J. M.

Einfeld, D.

D. Einfeld, D. Stuck, K. Behringer, P. Thoma, Z. Naturforsch. Teil A: 31, 1131 (1976).

Erminy, D. E.

H. J. Kostkowski, D. E. Erminy, A. T. Hattenburg, Advances in Geophysics (Academic, New York, 1970), Vol. 14, p. 111.
[CrossRef]

Gieres, G.

Hattenburg, A. T.

H. J. Kostkowski, D. E. Erminy, A. T. Hattenburg, Advances in Geophysics (Academic, New York, 1970), Vol. 14, p. 111.
[CrossRef]

Kern, J.

J. Kern, Z. Angew. Phys. 6, 536 (1954).

Key, P. J.

P. J. Key, National Physical Laboratory, Teddington, England; private communication.

Kostkowski, H. J.

H. J. Kostkowski, D. E. Erminy, A. T. Hattenburg, Advances in Geophysics (Academic, New York, 1970), Vol. 14, p. 111.
[CrossRef]

Nakagawa, Y.

Y. Nakagawa, F. Ontani, Tokyo J. Ilium. Eng. Inst. Jpn. 56, 678 (1972).
[CrossRef]

Ontani, F.

Y. Nakagawa, F. Ontani, Tokyo J. Ilium. Eng. Inst. Jpn. 56, 678 (1972).
[CrossRef]

Ott, W. R.

Pitz, E.

E. Pitz, Appl. Opt. 8, 225 (1969).
[CrossRef]

Samson, J. A. R.

J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Wiley, New York, 1967).

Saunders, R. D.

R. D. Saunders, W. R. Ott, Appl. Opt. 15, 827 (1976).
[CrossRef] [PubMed]

R. D. Saunders, The 1973 NBS Scale of Spectral Irradiance (April 1977), National Bureau of Standards, Technical Note 594-13 (Government Printing Office, Washington, D.C., 1977).

Stuck, D.

D. Einfeld, D. Stuck, K. Behringer, P. Thoma, Z. Naturforsch. Teil A: 31, 1131 (1976).

D. Stuck, B. Wende, J. Opt. Soc. Am. 62, 96 (1972).
[CrossRef]

Thoma, P.

D. Einfeld, D. Stuck, K. Behringer, P. Thoma, Z. Naturforsch. Teil A: 31, 1131 (1976).

Wende, B.

Wiese, W. L.

W. R. Ott, W. L. Wiese, Opt. Eng. 12, 86 (1973).
[CrossRef]

Zalewski, E. F.

E. F. Zalewski, J. Opt. Soc. 62, 1372 (1972).

Appl. Opt.

J. Opt. Soc.

E. F. Zalewski, J. Opt. Soc. 62, 1372 (1972).

J. Opt. Soc. Am.

W. R. Ott, J. D. Bartoe, J. Opt. Soc. Am. 62, 1972 (1972).

D. Stuck, B. Wende, J. Opt. Soc. Am. 62, 96 (1972).
[CrossRef]

Opt. Eng.

W. R. Ott, W. L. Wiese, Opt. Eng. 12, 86 (1973).
[CrossRef]

Tokyo J. Ilium. Eng. Inst. Jpn.

Y. Nakagawa, F. Ontani, Tokyo J. Ilium. Eng. Inst. Jpn. 56, 678 (1972).
[CrossRef]

Z. Angew. Phys.

J. Kern, Z. Angew. Phys. 6, 536 (1954).

Z. Naturforsch. Teil A:

D. Einfeld, D. Stuck, K. Behringer, P. Thoma, Z. Naturforsch. Teil A: 31, 1131 (1976).

Other

H. J. Kostkowski, D. E. Erminy, A. T. Hattenburg, Advances in Geophysics (Academic, New York, 1970), Vol. 14, p. 111.
[CrossRef]

J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Wiley, New York, 1967).

P. J. Key, National Physical Laboratory, Teddington, England; private communication.

R. D. Saunders, The 1973 NBS Scale of Spectral Irradiance (April 1977), National Bureau of Standards, Technical Note 594-13 (Government Printing Office, Washington, D.C., 1977).

Although the solid angle subtended by each source may be slightly different, each is small (≈f/200). Therefore the errors from a noncosine corrected diffuser were estimated to be less than 0.01%.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the optical system used to effect a transfer from a spectral radiance standard to a spectral irradiance standard.

Fig. 2
Fig. 2

Schematic illustrating the operation of a deuterium lamp. The radiation is measured through the Suprasil window sealed to the quartz lamp envelope.

Fig. 3
Fig. 3

Typical spectral irradiance of a 1000-W quartz–halogen lamp and a 30-W deuterium lamp.

Fig. 4
Fig. 4

Comparison of the spectral radiance and spectral irradiance of a deuterium lamp. The data are nomalized at 250 nm.

Fig. 5
Fig. 5

The dependence of the spectral irradiance upon pitch and yaw of a deuterium lamp located 50 cm from a 1-cm2 aperture. A 2° angular change is equivalent to a 1.75-cm translational change.

Fig. 6
Fig. 6

Spectral irradiance as a function of lamp current for two representative wavelengths. The values are normalized to the spectral irradiance at a current of 0.3 A.

Fig. 7
Fig. 7

Spectal irradiance measurements as a function of distance between the deuterium lamp envelope and a 1-cm2 field stop. Results expected by assuming the inverse square law and taking into account the finite size of the field stop and the position of the radiation center (determined by least squares fitting) are illustrated by the solid line. The data are taken at three representative wavelengths.

Tables (3)

Tables Icon

Table I Typical Spectral Irradiance at 50 cm of a Deuterium Lamp Operated at 300 mA

Tables Icon

Table II Spectral Radiance of a Deuterium Lamp Operated at 300 mAa

Tables Icon

Table III VUV Spectral Irradiance at 50 cm of the Deuterium Lamp Used in Tables I and II.a

Metrics