Abstract

The changes in the real and imaginary parts of the index of refraction of germanium have been measured at 6943 Å as a function of incident power up to 5 MW/cm2. The results indicate that for nanosecond pulses the primary cause of the change is heating with temperature changes of up to 350°C. In addition, a diffraction grating formed on the surface by interference between the intense beam and a probing beam produces an additional effective change in reflectivity as well as a spatially separated diffracted beam. It is shown that, for a grating spacing of 20 μm, transverse diffusion effects cause no degradation in the effectiveness of the grating.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Lukes, E. Schmidt, in Proceedings International Conference on Physics Semiconductors, Exeter (1962), p. 333.
  2. A. M. Bonch-Bruevich, V. P. Kovalev, G. S. Romanov, Ya. A. Imas, M. N. Libenson, Sov. Phys. Tech. Phys. 13, 507 (1968).
  3. D. H. Auston, C. V. Shank, Phys. Rev. Lett. 32, 1120 (1974);C. V. Shank, D. H. Auston, Phys. Rev. Lett. 34, 479 (1975).
    [Crossref]
  4. I. Nagata, R. J. Galagali, S. Horiguchi, T. Sakai, T. Nakaya, J. Phys. D 3, 1305 (1970).
    [Crossref]
  5. H. W. Icenogle, B. C. Piatt, W. L. Wolfe, Appl. Opt. 15, 2348 (1976).
    [Crossref] [PubMed]
  6. M. R. Baklanov, K. K. Svitashev, L. V. Semenenko, V. K. Sokolov, Opt. Spectrosc. 39, 205 (1975).
  7. R. F. Potter, Phys. Rev. 150, 150 (1966).
    [Crossref]
  8. R. J. Archer, Phys. Rev. 110, 354 (1958).
    [Crossref]
  9. A. Abraham, J. Tauc, B. Velicky, Phys. Status Solidi 3, 767 (1963).
    [Crossref]
  10. T. A. Wiggins, A. Salik, Appl. Phys. Lett. 25, 438 (1974).
    [Crossref]
  11. R. M. Herman, Appl. Opt. 17, 520 (1978).
    [Crossref] [PubMed]
  12. M. Cardona, H. S. Sommers, Phys. Rev. 122, 1382 (1961).
    [Crossref]

1978 (1)

1976 (1)

1975 (1)

M. R. Baklanov, K. K. Svitashev, L. V. Semenenko, V. K. Sokolov, Opt. Spectrosc. 39, 205 (1975).

1974 (2)

D. H. Auston, C. V. Shank, Phys. Rev. Lett. 32, 1120 (1974);C. V. Shank, D. H. Auston, Phys. Rev. Lett. 34, 479 (1975).
[Crossref]

T. A. Wiggins, A. Salik, Appl. Phys. Lett. 25, 438 (1974).
[Crossref]

1970 (1)

I. Nagata, R. J. Galagali, S. Horiguchi, T. Sakai, T. Nakaya, J. Phys. D 3, 1305 (1970).
[Crossref]

1968 (1)

A. M. Bonch-Bruevich, V. P. Kovalev, G. S. Romanov, Ya. A. Imas, M. N. Libenson, Sov. Phys. Tech. Phys. 13, 507 (1968).

1966 (1)

R. F. Potter, Phys. Rev. 150, 150 (1966).
[Crossref]

1963 (1)

A. Abraham, J. Tauc, B. Velicky, Phys. Status Solidi 3, 767 (1963).
[Crossref]

1961 (1)

M. Cardona, H. S. Sommers, Phys. Rev. 122, 1382 (1961).
[Crossref]

1958 (1)

R. J. Archer, Phys. Rev. 110, 354 (1958).
[Crossref]

Abraham, A.

A. Abraham, J. Tauc, B. Velicky, Phys. Status Solidi 3, 767 (1963).
[Crossref]

Archer, R. J.

R. J. Archer, Phys. Rev. 110, 354 (1958).
[Crossref]

Auston, D. H.

D. H. Auston, C. V. Shank, Phys. Rev. Lett. 32, 1120 (1974);C. V. Shank, D. H. Auston, Phys. Rev. Lett. 34, 479 (1975).
[Crossref]

Baklanov, M. R.

M. R. Baklanov, K. K. Svitashev, L. V. Semenenko, V. K. Sokolov, Opt. Spectrosc. 39, 205 (1975).

Bonch-Bruevich, A. M.

A. M. Bonch-Bruevich, V. P. Kovalev, G. S. Romanov, Ya. A. Imas, M. N. Libenson, Sov. Phys. Tech. Phys. 13, 507 (1968).

Cardona, M.

M. Cardona, H. S. Sommers, Phys. Rev. 122, 1382 (1961).
[Crossref]

Galagali, R. J.

I. Nagata, R. J. Galagali, S. Horiguchi, T. Sakai, T. Nakaya, J. Phys. D 3, 1305 (1970).
[Crossref]

Herman, R. M.

Horiguchi, S.

I. Nagata, R. J. Galagali, S. Horiguchi, T. Sakai, T. Nakaya, J. Phys. D 3, 1305 (1970).
[Crossref]

Icenogle, H. W.

Imas, Ya. A.

A. M. Bonch-Bruevich, V. P. Kovalev, G. S. Romanov, Ya. A. Imas, M. N. Libenson, Sov. Phys. Tech. Phys. 13, 507 (1968).

Kovalev, V. P.

A. M. Bonch-Bruevich, V. P. Kovalev, G. S. Romanov, Ya. A. Imas, M. N. Libenson, Sov. Phys. Tech. Phys. 13, 507 (1968).

Libenson, M. N.

A. M. Bonch-Bruevich, V. P. Kovalev, G. S. Romanov, Ya. A. Imas, M. N. Libenson, Sov. Phys. Tech. Phys. 13, 507 (1968).

Lukes, F.

F. Lukes, E. Schmidt, in Proceedings International Conference on Physics Semiconductors, Exeter (1962), p. 333.

Nagata, I.

I. Nagata, R. J. Galagali, S. Horiguchi, T. Sakai, T. Nakaya, J. Phys. D 3, 1305 (1970).
[Crossref]

Nakaya, T.

I. Nagata, R. J. Galagali, S. Horiguchi, T. Sakai, T. Nakaya, J. Phys. D 3, 1305 (1970).
[Crossref]

Piatt, B. C.

Potter, R. F.

R. F. Potter, Phys. Rev. 150, 150 (1966).
[Crossref]

Romanov, G. S.

A. M. Bonch-Bruevich, V. P. Kovalev, G. S. Romanov, Ya. A. Imas, M. N. Libenson, Sov. Phys. Tech. Phys. 13, 507 (1968).

Sakai, T.

I. Nagata, R. J. Galagali, S. Horiguchi, T. Sakai, T. Nakaya, J. Phys. D 3, 1305 (1970).
[Crossref]

Salik, A.

T. A. Wiggins, A. Salik, Appl. Phys. Lett. 25, 438 (1974).
[Crossref]

Schmidt, E.

F. Lukes, E. Schmidt, in Proceedings International Conference on Physics Semiconductors, Exeter (1962), p. 333.

Semenenko, L. V.

M. R. Baklanov, K. K. Svitashev, L. V. Semenenko, V. K. Sokolov, Opt. Spectrosc. 39, 205 (1975).

Shank, C. V.

D. H. Auston, C. V. Shank, Phys. Rev. Lett. 32, 1120 (1974);C. V. Shank, D. H. Auston, Phys. Rev. Lett. 34, 479 (1975).
[Crossref]

Sokolov, V. K.

M. R. Baklanov, K. K. Svitashev, L. V. Semenenko, V. K. Sokolov, Opt. Spectrosc. 39, 205 (1975).

Sommers, H. S.

M. Cardona, H. S. Sommers, Phys. Rev. 122, 1382 (1961).
[Crossref]

Svitashev, K. K.

M. R. Baklanov, K. K. Svitashev, L. V. Semenenko, V. K. Sokolov, Opt. Spectrosc. 39, 205 (1975).

Tauc, J.

A. Abraham, J. Tauc, B. Velicky, Phys. Status Solidi 3, 767 (1963).
[Crossref]

Velicky, B.

A. Abraham, J. Tauc, B. Velicky, Phys. Status Solidi 3, 767 (1963).
[Crossref]

Wiggins, T. A.

T. A. Wiggins, A. Salik, Appl. Phys. Lett. 25, 438 (1974).
[Crossref]

Wolfe, W. L.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

T. A. Wiggins, A. Salik, Appl. Phys. Lett. 25, 438 (1974).
[Crossref]

J. Phys. D (1)

I. Nagata, R. J. Galagali, S. Horiguchi, T. Sakai, T. Nakaya, J. Phys. D 3, 1305 (1970).
[Crossref]

Opt. Spectrosc. (1)

M. R. Baklanov, K. K. Svitashev, L. V. Semenenko, V. K. Sokolov, Opt. Spectrosc. 39, 205 (1975).

Phys. Rev. (3)

R. F. Potter, Phys. Rev. 150, 150 (1966).
[Crossref]

R. J. Archer, Phys. Rev. 110, 354 (1958).
[Crossref]

M. Cardona, H. S. Sommers, Phys. Rev. 122, 1382 (1961).
[Crossref]

Phys. Rev. Lett. (1)

D. H. Auston, C. V. Shank, Phys. Rev. Lett. 32, 1120 (1974);C. V. Shank, D. H. Auston, Phys. Rev. Lett. 34, 479 (1975).
[Crossref]

Phys. Status Solidi (1)

A. Abraham, J. Tauc, B. Velicky, Phys. Status Solidi 3, 767 (1963).
[Crossref]

Sov. Phys. Tech. Phys. (1)

A. M. Bonch-Bruevich, V. P. Kovalev, G. S. Romanov, Ya. A. Imas, M. N. Libenson, Sov. Phys. Tech. Phys. 13, 507 (1968).

Other (1)

F. Lukes, E. Schmidt, in Proceedings International Conference on Physics Semiconductors, Exeter (1962), p. 333.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The change in the real and imaginary parts of the refractive index as a function of intensity.

Fig. 2
Fig. 2

The change in reflectivity as a function of intensity at 70° angle of incidence.

Fig. 3
Fig. 3

The change in reflectivity as a function of intensity at 78° angle of incidence.

Fig. 4
Fig. 4

The fractional change in reflectivity as a function of intensity at 2° for perpendicular planes of polarization.

Fig. 5
Fig. 5

The fractional change in reflectivity as a function of intensity at 2° for parallel planes of polarization.

Fig. 6
Fig. 6

The ratio of the diffracted intensity to the product of the weak beam intensity and initial reflectivity at 2° angle of incidence as a function of the square of the intensity for parallel planes of polarization.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

N = n i k = n 0 i k 0 δ n i δ k ,
N = n 0 i k 0 ( n 2 + i k 2 ) I ( n 4 i k 4 ) I 2 + . . . ,
( Δ R R 0 ) n 0 4 4 = n 0 ( n 0 δ n H + 2 k 0 δ k H ) ( 1 + D ) + ( δ n H 2 + δ k H 2 ) × ( 1 + D ) 2 [ n 0 ( δ n H 2 δ k H 2 ) + 6 k 0 δ n H δ k H ] ( 1 + 2 D )
I Diff I w R 0 n 0 4 4 = ( δ n H 2 + δ k H 2 ) D 2

Metrics