Abstract

Thermal excitations on a germanium surface under simultaneous irradiation by two monochromatic optical beams, one strong and one weak, are predicted as functions of the angular separation and frequency difference between the beams, their relative polarization, their intensities, and pulse durations. Nonlinear optical reflection for Q-switched ruby laser pulses is then described. Weak reflected and diffracted beam intensities show tendencies in which the former is preferentially enhanced for a downshifted weak beam frequency, while the latter depends only on the shift magnitude. Both are suppressed for large shifts or large angular separations between input beams.

© 1978 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of Surface Damage on the Reflectance of Germanium in the 2650–10 000-Å Region

T. M. Donovan, E. J. Ashley, and H. E. Bennett
J. Opt. Soc. Am. 53(12) 1403-1409 (1963)

Reflection of a Gaussian beam at a nonlinear interface

W. J. Tomlinson, J. P. Gordon, P. W. Smith, and A. E. Kaplan
Appl. Opt. 21(11) 2041-2051 (1982)

Refractive index changes in germanium due to intense radiation

T. A. Wiggins, J. A. Bellay, and A. H. Carrieri
Appl. Opt. 17(4) 526-530 (1978)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (42)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription