Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Rosasco, E. S. Etz, Res. Dev. 28, 20 (June1977).
  2. R. G. Stafford, R. K. Chang, P. J. Kindlmann, Proceedings of the 8th Materials Research Symposium on Methods and Standards for Environmental Measurements, W. H. Kirchhoff, Ed. NBS Spec. Publ. 464 (U.S. Govt. Printing Office, Washington, D.C., 1977), p. 659.
  3. W. A. Bonner, H. R. Hulett, R. G. Sweet, L. A. Herzenberg, Rev. Sci. Instrum. 43, 404 (1972).
    [CrossRef] [PubMed]
  4. H. S. Bennett, R. A. Forman, J. Appl. Phys. 48, 1432 (1977);A. Rosencwaig, A. Gersho, J. Appl. Phys. 47, 64 (1976).
    [CrossRef]
  5. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  6. H. C. Van DeHulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  7. J. V. Dave, “Subroutines for Computing the Parameters of the Electromagnetic Radiation Scattered by a Sphere,” International Business Machine Corp. Report 320-3237 (May1968).
  8. M. Kerker, Clarkson College of Technology, has verified our numerical results, utilizing his routines for Mie scattering calculations; private communication.
  9. H. Oser, National Bureau of Standards; private communication.
  10. D. Deirmandjian, R. Clasen, W. Viezee, J. Opt. Soc. Am. 51, 620 (1961).
    [CrossRef]
  11. G. N. Plass, Appl. Opt. 5, 279 (1966).
    [CrossRef] [PubMed]
  12. R. Fuchs, K. L. Kliewer, J. Opt. Soc. Am. 58, 319 (1968).
    [CrossRef]
  13. H. J. Metz, H. K. Dettmar, Kolloid Z. Z. Polym. 192, 107 (1963).These authors point out that the peaks in the scattering efficiency for nonabsorbing spheres are associated with particular “resonances” in the an and bn coefficients. They do not identify these with “virtual” modes and resonances of the internal fields, nor do they examine the implications for absorption and inelastic scattering processes.
    [CrossRef]
  14. H. Chew, P. J. McNulty, M. Kerker, Phys. Rev. A13, 396 (1976).

1977 (2)

G. J. Rosasco, E. S. Etz, Res. Dev. 28, 20 (June1977).

H. S. Bennett, R. A. Forman, J. Appl. Phys. 48, 1432 (1977);A. Rosencwaig, A. Gersho, J. Appl. Phys. 47, 64 (1976).
[CrossRef]

1976 (1)

H. Chew, P. J. McNulty, M. Kerker, Phys. Rev. A13, 396 (1976).

1972 (1)

W. A. Bonner, H. R. Hulett, R. G. Sweet, L. A. Herzenberg, Rev. Sci. Instrum. 43, 404 (1972).
[CrossRef] [PubMed]

1968 (1)

1966 (1)

1963 (1)

H. J. Metz, H. K. Dettmar, Kolloid Z. Z. Polym. 192, 107 (1963).These authors point out that the peaks in the scattering efficiency for nonabsorbing spheres are associated with particular “resonances” in the an and bn coefficients. They do not identify these with “virtual” modes and resonances of the internal fields, nor do they examine the implications for absorption and inelastic scattering processes.
[CrossRef]

1961 (1)

Bennett, H. S.

H. S. Bennett, R. A. Forman, J. Appl. Phys. 48, 1432 (1977);A. Rosencwaig, A. Gersho, J. Appl. Phys. 47, 64 (1976).
[CrossRef]

Bonner, W. A.

W. A. Bonner, H. R. Hulett, R. G. Sweet, L. A. Herzenberg, Rev. Sci. Instrum. 43, 404 (1972).
[CrossRef] [PubMed]

Chang, R. K.

R. G. Stafford, R. K. Chang, P. J. Kindlmann, Proceedings of the 8th Materials Research Symposium on Methods and Standards for Environmental Measurements, W. H. Kirchhoff, Ed. NBS Spec. Publ. 464 (U.S. Govt. Printing Office, Washington, D.C., 1977), p. 659.

Chew, H.

H. Chew, P. J. McNulty, M. Kerker, Phys. Rev. A13, 396 (1976).

Clasen, R.

Dave, J. V.

J. V. Dave, “Subroutines for Computing the Parameters of the Electromagnetic Radiation Scattered by a Sphere,” International Business Machine Corp. Report 320-3237 (May1968).

Deirmandjian, D.

Dettmar, H. K.

H. J. Metz, H. K. Dettmar, Kolloid Z. Z. Polym. 192, 107 (1963).These authors point out that the peaks in the scattering efficiency for nonabsorbing spheres are associated with particular “resonances” in the an and bn coefficients. They do not identify these with “virtual” modes and resonances of the internal fields, nor do they examine the implications for absorption and inelastic scattering processes.
[CrossRef]

Etz, E. S.

G. J. Rosasco, E. S. Etz, Res. Dev. 28, 20 (June1977).

Forman, R. A.

H. S. Bennett, R. A. Forman, J. Appl. Phys. 48, 1432 (1977);A. Rosencwaig, A. Gersho, J. Appl. Phys. 47, 64 (1976).
[CrossRef]

Fuchs, R.

Herzenberg, L. A.

W. A. Bonner, H. R. Hulett, R. G. Sweet, L. A. Herzenberg, Rev. Sci. Instrum. 43, 404 (1972).
[CrossRef] [PubMed]

Hulett, H. R.

W. A. Bonner, H. R. Hulett, R. G. Sweet, L. A. Herzenberg, Rev. Sci. Instrum. 43, 404 (1972).
[CrossRef] [PubMed]

Kerker, M.

H. Chew, P. J. McNulty, M. Kerker, Phys. Rev. A13, 396 (1976).

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

M. Kerker, Clarkson College of Technology, has verified our numerical results, utilizing his routines for Mie scattering calculations; private communication.

Kindlmann, P. J.

R. G. Stafford, R. K. Chang, P. J. Kindlmann, Proceedings of the 8th Materials Research Symposium on Methods and Standards for Environmental Measurements, W. H. Kirchhoff, Ed. NBS Spec. Publ. 464 (U.S. Govt. Printing Office, Washington, D.C., 1977), p. 659.

Kliewer, K. L.

McNulty, P. J.

H. Chew, P. J. McNulty, M. Kerker, Phys. Rev. A13, 396 (1976).

Metz, H. J.

H. J. Metz, H. K. Dettmar, Kolloid Z. Z. Polym. 192, 107 (1963).These authors point out that the peaks in the scattering efficiency for nonabsorbing spheres are associated with particular “resonances” in the an and bn coefficients. They do not identify these with “virtual” modes and resonances of the internal fields, nor do they examine the implications for absorption and inelastic scattering processes.
[CrossRef]

Oser, H.

H. Oser, National Bureau of Standards; private communication.

Plass, G. N.

Rosasco, G. J.

G. J. Rosasco, E. S. Etz, Res. Dev. 28, 20 (June1977).

Stafford, R. G.

R. G. Stafford, R. K. Chang, P. J. Kindlmann, Proceedings of the 8th Materials Research Symposium on Methods and Standards for Environmental Measurements, W. H. Kirchhoff, Ed. NBS Spec. Publ. 464 (U.S. Govt. Printing Office, Washington, D.C., 1977), p. 659.

Sweet, R. G.

W. A. Bonner, H. R. Hulett, R. G. Sweet, L. A. Herzenberg, Rev. Sci. Instrum. 43, 404 (1972).
[CrossRef] [PubMed]

Van DeHulst, H. C.

H. C. Van DeHulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Viezee, W.

Appl. Opt. (1)

J. Appl. Phys. (1)

H. S. Bennett, R. A. Forman, J. Appl. Phys. 48, 1432 (1977);A. Rosencwaig, A. Gersho, J. Appl. Phys. 47, 64 (1976).
[CrossRef]

J. Opt. Soc. Am. (2)

Kolloid Z. Z. Polym. (1)

H. J. Metz, H. K. Dettmar, Kolloid Z. Z. Polym. 192, 107 (1963).These authors point out that the peaks in the scattering efficiency for nonabsorbing spheres are associated with particular “resonances” in the an and bn coefficients. They do not identify these with “virtual” modes and resonances of the internal fields, nor do they examine the implications for absorption and inelastic scattering processes.
[CrossRef]

Phys. Rev. (1)

H. Chew, P. J. McNulty, M. Kerker, Phys. Rev. A13, 396 (1976).

Res. Dev. (1)

G. J. Rosasco, E. S. Etz, Res. Dev. 28, 20 (June1977).

Rev. Sci. Instrum. (1)

W. A. Bonner, H. R. Hulett, R. G. Sweet, L. A. Herzenberg, Rev. Sci. Instrum. 43, 404 (1972).
[CrossRef] [PubMed]

Other (6)

R. G. Stafford, R. K. Chang, P. J. Kindlmann, Proceedings of the 8th Materials Research Symposium on Methods and Standards for Environmental Measurements, W. H. Kirchhoff, Ed. NBS Spec. Publ. 464 (U.S. Govt. Printing Office, Washington, D.C., 1977), p. 659.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

H. C. Van DeHulst, Light Scattering by Small Particles (Wiley, New York, 1957).

J. V. Dave, “Subroutines for Computing the Parameters of the Electromagnetic Radiation Scattered by a Sphere,” International Business Machine Corp. Report 320-3237 (May1968).

M. Kerker, Clarkson College of Technology, has verified our numerical results, utilizing his routines for Mie scattering calculations; private communication.

H. Oser, National Bureau of Standards; private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Efficiency factors for scattering and absorption as a function of the size parameter for a microparticle. The complex refractive index is m, and the grid size for the size parameter x is x = 0.2 + (100.0 − 0.2) (n − 1)/499, where 1 n 500 and the grid increment Δx = 0.2. The solid curve is the efficiency factor for scattering Qs, and the dashed curve is the scaled efficiency factor for absorption (1000/αp)Qa, where αp is the absorption coefficient of the microparticle in cm−1. All other quantities are dimensionless. The quantity αp has the value 10 cm−1.

Fig. 2
Fig. 2

Normalized efficiency factors of absorption as a function of the absorption coefficient for the microparticle. The complex refractive index is m = m1im2, and the grid for the size parameter is x = 7.141 + (7.179 − 7.141) (n − l)/76, where 1 n 77 . The normalized efficiency factor for absorption when x min x x max is Qa(x, norm) = Qa(x)/Qa(max, xmin, xmax), where Qa(x) is the efficiency factor for absorption and Qa (max; xmin, xmax) is the maximum value of Qa (x) in the interval x min x x max . The four curves give the normalized efficiency factors for absorption when m = m1i(αpλ o /4π), where m1 = 2.2 and λ o = 514.5 nm and where the absorption coefficient αp has the values 1.0 cm−1, 100 cm−1, 300 cm−1, and 600 cm−1. The corresponding scaled maxima [Qa(max; 7.141, 7.179)/αp] are, respectively, 0.0267 cm, 0.00172 cm, 0.000430 cm, and 0.000253 cm, where αp is in units of cm−1.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Q E = 2 x 2 n = 0 ( 2 n + 1 ) ( Re a n + Re b n ) ,
Q S = 2 x 2 n = 0 ( 2 n + 1 ) ( | a n | 2 + | b n | 2 ) ,
Q A = Q E Q S ,
a n = j n ( ρ 2 ) ( d / d ρ 1 ) [ ρ 1 j n ( ρ 1 ) ] m 2 j n ( ρ 1 ) ( d / d ρ 2 ) [ ρ 2 j n ( ρ 2 ) ] h n ( 2 ) ( ρ 2 ) ( d / d ρ 1 ) [ ρ 1 j n ( ρ 1 ) ] m 2 j n ( ρ 1 ) ( d / d ρ 2 ) [ ρ 2 h n ( 2 ) ( ρ 2 ) ]
b n = j n ( ρ 2 ) ( d / d ρ 1 ) [ ρ 1 j n ( ρ 1 ) ] j n ( ρ 1 ) ( d / d ρ 2 ) [ ρ 2 j n ( ρ 2 ) ] h n ( 2 ) ( ρ 2 ) ( d / d ρ 1 ) [ ρ 1 j n ( ρ 1 ) ] j n ( ρ 1 ) ( d / d ρ 2 ) [ ρ 2 h n ( 2 ) ( ρ 2 ) ] .

Metrics