Abstract

A method is described permitting excitation of a small number of modes in graded index fibers, the order of the launched mode being easily varied and determined. Using this launching technique, it is possible to determine the index profile and index difference of graded core fibers; results are compared with those obtained by other techniques. Other important fiber parameters, such as the differential attenuation and the differential propagation delay time as a function of the mode parameter, are also obtained, giving an insight into the fundamental propagation characteristics of the fiber.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. B. Keck, Appl. Opt. 13, 1882 (1974).
    [CrossRef] [PubMed]
  2. W. A. Gambling, D. N. Payne, H. Matsumura, Appl. Opt. 14, 1538 (1975).
    [CrossRef] [PubMed]
  3. L. Jeunhomme, J. P. Pocholle, Electron. Lett. 12, 63 (1976).
    [CrossRef]
  4. R. Olshansky, S. M. Oaks, D. B. Keck, in Digest of Second Topical Meeting on Optical Fiber Transmission (Optical Society of America, Washington, D.C., 1977), paper TuE5.
  5. R. Olshansky, Appl. Opt. 14, 935 (1975).
    [PubMed]
  6. A. Yariv, Introduction to Optical Electronics (Holt, Rinehart and Winston, New York, 1971), p. 38.
  7. J. A. Arnaud, R. M. Derosier, Bell Syst. Tech. J. 55, 1489 (1976).
  8. L. Jeunhomme, J. P. Pocholle, Opt. Commun. 12, 89 (1974).
    [CrossRef]
  9. R. Olshansky, Appl. Opt. 16, 2171 (1977).
    [CrossRef] [PubMed]

1977 (1)

1976 (2)

J. A. Arnaud, R. M. Derosier, Bell Syst. Tech. J. 55, 1489 (1976).

L. Jeunhomme, J. P. Pocholle, Electron. Lett. 12, 63 (1976).
[CrossRef]

1975 (2)

1974 (2)

D. B. Keck, Appl. Opt. 13, 1882 (1974).
[CrossRef] [PubMed]

L. Jeunhomme, J. P. Pocholle, Opt. Commun. 12, 89 (1974).
[CrossRef]

Arnaud, J. A.

J. A. Arnaud, R. M. Derosier, Bell Syst. Tech. J. 55, 1489 (1976).

Derosier, R. M.

J. A. Arnaud, R. M. Derosier, Bell Syst. Tech. J. 55, 1489 (1976).

Gambling, W. A.

Jeunhomme, L.

L. Jeunhomme, J. P. Pocholle, Electron. Lett. 12, 63 (1976).
[CrossRef]

L. Jeunhomme, J. P. Pocholle, Opt. Commun. 12, 89 (1974).
[CrossRef]

Keck, D. B.

D. B. Keck, Appl. Opt. 13, 1882 (1974).
[CrossRef] [PubMed]

R. Olshansky, S. M. Oaks, D. B. Keck, in Digest of Second Topical Meeting on Optical Fiber Transmission (Optical Society of America, Washington, D.C., 1977), paper TuE5.

Matsumura, H.

Oaks, S. M.

R. Olshansky, S. M. Oaks, D. B. Keck, in Digest of Second Topical Meeting on Optical Fiber Transmission (Optical Society of America, Washington, D.C., 1977), paper TuE5.

Olshansky, R.

R. Olshansky, Appl. Opt. 16, 2171 (1977).
[CrossRef] [PubMed]

R. Olshansky, Appl. Opt. 14, 935 (1975).
[PubMed]

R. Olshansky, S. M. Oaks, D. B. Keck, in Digest of Second Topical Meeting on Optical Fiber Transmission (Optical Society of America, Washington, D.C., 1977), paper TuE5.

Payne, D. N.

Pocholle, J. P.

L. Jeunhomme, J. P. Pocholle, Electron. Lett. 12, 63 (1976).
[CrossRef]

L. Jeunhomme, J. P. Pocholle, Opt. Commun. 12, 89 (1974).
[CrossRef]

Yariv, A.

A. Yariv, Introduction to Optical Electronics (Holt, Rinehart and Winston, New York, 1971), p. 38.

Appl. Opt. (4)

Bell Syst. Tech. J. (1)

J. A. Arnaud, R. M. Derosier, Bell Syst. Tech. J. 55, 1489 (1976).

Electron. Lett. (1)

L. Jeunhomme, J. P. Pocholle, Electron. Lett. 12, 63 (1976).
[CrossRef]

Opt. Commun. (1)

L. Jeunhomme, J. P. Pocholle, Opt. Commun. 12, 89 (1974).
[CrossRef]

Other (2)

A. Yariv, Introduction to Optical Electronics (Holt, Rinehart and Winston, New York, 1971), p. 38.

R. Olshansky, S. M. Oaks, D. B. Keck, in Digest of Second Topical Meeting on Optical Fiber Transmission (Optical Society of America, Washington, D.C., 1977), paper TuE5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Path of an ideal ray obtained approximately by the launching technique in (b).

Fig. 2
Fig. 2

Typical measured far field radiation patterns of a 1-m long fiber for various entering positions r0.

Fig.3
Fig.3

Angle of the ring θe as a function of r0 after 1 m of fiber. (×); measurement at λ = 633 nm, (—); least squares fit.

Fig. 4
Fig. 4

Near field pattern of the 1-m long fiber with least squares fit (- - - -) and the points deduced from Fig. 3 (×).

Fig. 5
Fig. 5

Launching efficiency ρ(r0) and modal attenuation α(r0) as a function of normalized entering coordinate r0/a.

Fig. 6
Fig. 6

Output pulses after 1 km of fiber for various entering coordinates r0.

Fig. 7
Fig. 7

Differential group delay time after the 1-km long fiber as a function of entering coordinate r0.

Fig. 8
Fig. 8

Near field pattern of a 1-m long sample of fiber (far end) with a general least squares fit (- - -, α = 1.77) and a least squares fit in two parts (…. = 1.89 until 15 μm and α = 2.35 above 17.5 μm).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n ( r ) = n 1 [ 1 2 Δ g ( r ) ] ½ , r = 0 g ( r ) = 0 n ( o ) = n 1 , r a g ( r ) = 1 n ( r ) = n 1 ( 1 2 Δ ) ½ = n 2 , }
( 2 π n 2 ) / λ < β < ( 2 π n 1 ) / λ ,
ν = 0 , β = [ ( 2 π ) / λ ] n ( r 0 ) .
n ( r 0 ) = n 1 [ 1 2 Δ g ( r 0 ) ] ½ = n 1 cos θ 0 sin 2 θ 0 = 2 Δ g ( r 0 ) .
w 0 = ( λ π ) ½ ( a 2 2 Δ ) ¼ .
sin 2 θ e n 1 2 = 2 Δ g ( r 0 ) .
f ( r ) = K [ 1 g ( r ) ] = K ( 1 sin 2 θ e sin 2 θ M e ) .

Metrics