Abstract

In the early stages of a fire, the two mechanisms by which heat transfer occurs are conduction and convection ahead of the flame through gas and fuel phases. The convective flows induced are characterized by low-fluid velocities with changes in magnitude and direction occurring over small distances accompanied by sharp temperature changes. These characteristics make quantitative measurements of fluid velocities difficult using conventional techniques. With the advent of LDV techniques, a nonperturbing means of making high resolution measurements of 2-D flows now exists. In this paper the details of the LDV facility and the results of some recent experiments on the flame spread problem are presented.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yeh, H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1968).
    [Crossref]
  2. J. D. Trolinger, Laser Instrumentation for Flow Field Diagnostics, AGARDograph 186, (Advisory Group for Aerospace Research and Development, NATO, 1974).
  3. W. M. Farmer, J. O. Hornkohl, Appl. Opt. 12, 2636 (1973).
    [Crossref] [PubMed]
  4. A. J. Helmstetter, “An Experimental Study of Surface Convective Flows Preceding a Flame Front Spreading Over a Liquid Fuel,” MSE Thesis, Princeton University, Princeton, N.J. (1974).
  5. T. Hirano, S. E. Noreikis, T. E. Waterman, Combust. Flame 23, 83 (1974).
    [Crossref]
  6. A. C. Fernandez-Pello, F. A. Williams, in Proceedings of Fifteenth Symposium (International) on Combustion, Combustion Institute, Pittsburgh, (1975), p. 211.
  7. A. C. Fernandez-Pello, F. A. Williams, Combust. Sci. Technol. 14, 155 (1976).
    [Crossref]
  8. A. C. Fernandez-Pello, R. J. Santoro, “On the Dominant Mode of Heat Transfer in Downward Flame Spread,” accepted for presentation at the Seventeenth Symposium (International) on Combustion, Leeds, England (1978).

1976 (1)

A. C. Fernandez-Pello, F. A. Williams, Combust. Sci. Technol. 14, 155 (1976).
[Crossref]

1974 (1)

T. Hirano, S. E. Noreikis, T. E. Waterman, Combust. Flame 23, 83 (1974).
[Crossref]

1973 (1)

1968 (1)

Y. Yeh, H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1968).
[Crossref]

Cummins, H. Z.

Y. Yeh, H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1968).
[Crossref]

Farmer, W. M.

Fernandez-Pello, A. C.

A. C. Fernandez-Pello, F. A. Williams, Combust. Sci. Technol. 14, 155 (1976).
[Crossref]

A. C. Fernandez-Pello, F. A. Williams, in Proceedings of Fifteenth Symposium (International) on Combustion, Combustion Institute, Pittsburgh, (1975), p. 211.

A. C. Fernandez-Pello, R. J. Santoro, “On the Dominant Mode of Heat Transfer in Downward Flame Spread,” accepted for presentation at the Seventeenth Symposium (International) on Combustion, Leeds, England (1978).

Helmstetter, A. J.

A. J. Helmstetter, “An Experimental Study of Surface Convective Flows Preceding a Flame Front Spreading Over a Liquid Fuel,” MSE Thesis, Princeton University, Princeton, N.J. (1974).

Hirano, T.

T. Hirano, S. E. Noreikis, T. E. Waterman, Combust. Flame 23, 83 (1974).
[Crossref]

Hornkohl, J. O.

Noreikis, S. E.

T. Hirano, S. E. Noreikis, T. E. Waterman, Combust. Flame 23, 83 (1974).
[Crossref]

Santoro, R. J.

A. C. Fernandez-Pello, R. J. Santoro, “On the Dominant Mode of Heat Transfer in Downward Flame Spread,” accepted for presentation at the Seventeenth Symposium (International) on Combustion, Leeds, England (1978).

Trolinger, J. D.

J. D. Trolinger, Laser Instrumentation for Flow Field Diagnostics, AGARDograph 186, (Advisory Group for Aerospace Research and Development, NATO, 1974).

Waterman, T. E.

T. Hirano, S. E. Noreikis, T. E. Waterman, Combust. Flame 23, 83 (1974).
[Crossref]

Williams, F. A.

A. C. Fernandez-Pello, F. A. Williams, Combust. Sci. Technol. 14, 155 (1976).
[Crossref]

A. C. Fernandez-Pello, F. A. Williams, in Proceedings of Fifteenth Symposium (International) on Combustion, Combustion Institute, Pittsburgh, (1975), p. 211.

Yeh, Y.

Y. Yeh, H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1968).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Yeh, H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1968).
[Crossref]

Combust. Flame (1)

T. Hirano, S. E. Noreikis, T. E. Waterman, Combust. Flame 23, 83 (1974).
[Crossref]

Combust. Sci. Technol. (1)

A. C. Fernandez-Pello, F. A. Williams, Combust. Sci. Technol. 14, 155 (1976).
[Crossref]

Other (4)

A. C. Fernandez-Pello, R. J. Santoro, “On the Dominant Mode of Heat Transfer in Downward Flame Spread,” accepted for presentation at the Seventeenth Symposium (International) on Combustion, Leeds, England (1978).

A. C. Fernandez-Pello, F. A. Williams, in Proceedings of Fifteenth Symposium (International) on Combustion, Combustion Institute, Pittsburgh, (1975), p. 211.

J. D. Trolinger, Laser Instrumentation for Flow Field Diagnostics, AGARDograph 186, (Advisory Group for Aerospace Research and Development, NATO, 1974).

A. J. Helmstetter, “An Experimental Study of Surface Convective Flows Preceding a Flame Front Spreading Over a Liquid Fuel,” MSE Thesis, Princeton University, Princeton, N.J. (1974).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the LDV optical installation.

Fig. 2
Fig. 2

Schematic diagram of the LDV signal processing electronics and data acquisition system.

Fig. 3
Fig. 3

LDV measured velocity profile for a water channel flow as a function of flow velocity, and LDV probe position along the length of the channel.

Fig. 4
Fig. 4

Hydrogen bubble measured velocity vector field in the subsurface liquid layer for flames spreading over a mixture of 45% ethanol-water at a bulk temperature of 11.5°C (flame speed = 1.65 cm/sec).

Fig. 5
Fig. 5

LDV measured velocity vector field in the subsurface liquid layer for flames spreading over a mixture of 45% ethanol–water at a bulk temperature of 11.5°C (flame speed = 2.09 cm/sec).

Fig. 6
Fig. 6

LDV measured velocity vector field for the gas phase field for flames spreading over a mixture of 45% ethanol–water at a bulk temperature of 11.5°C (flame speed = 2.09 cm/sec).

Fig. 7
Fig. 7

Particle trace photograph of the gas phase field for flames spreading over a mixture of 45% ethanol–water at a bulk temperature of 11.5°C.

Fig. 8
Fig. 8

LDV measured profiles of the vertical and horizontal components of the gas velocity for flames spreading downward along vertical PMMA cylinders 5 cm in diameter.

Fig. 9
Fig. 9

Particle trace photograph of the gas phase field for flames spreading downward along vertical PMMA cylinders 5 cm in diameter.

Metrics