Abstract

A method of attenuating laser beams is described, which is continuously variable, gives an output beam of constant Gaussian shape, and is adaptable to a wide range of laser types and power levels. The theory of the method is discussed, and the performance of a prototype system, used with a CO laser and having a dynamic range of >105, is presented.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Siegman, An Introduction to Lasers and Masers (McGraw-Hill, New York, 1970), Chap. 8.
  2. C. S. Evans, R. Hunneman, J. S. Seeley, J. Phys. D 9, 309 (1976).
    [CrossRef]

1976

C. S. Evans, R. Hunneman, J. S. Seeley, J. Phys. D 9, 309 (1976).
[CrossRef]

Evans, C. S.

C. S. Evans, R. Hunneman, J. S. Seeley, J. Phys. D 9, 309 (1976).
[CrossRef]

Hunneman, R.

C. S. Evans, R. Hunneman, J. S. Seeley, J. Phys. D 9, 309 (1976).
[CrossRef]

Seeley, J. S.

C. S. Evans, R. Hunneman, J. S. Seeley, J. Phys. D 9, 309 (1976).
[CrossRef]

Siegman, A. E.

A. E. Siegman, An Introduction to Lasers and Masers (McGraw-Hill, New York, 1970), Chap. 8.

J. Phys. D

C. S. Evans, R. Hunneman, J. S. Seeley, J. Phys. D 9, 309 (1976).
[CrossRef]

Other

A. E. Siegman, An Introduction to Lasers and Masers (McGraw-Hill, New York, 1970), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Coordinate axes for the spatial filter.

Fig. 2
Fig. 2

Transmission of the CO laser prototype system as a function of attenuator slide position.

Fig. 3
Fig. 3

Spectral transmission characteristics of a wedge-coated filter/attenuator designed for a CO2 laser (a) at the thin end and (b) at the thick end of the coating.

Fig. 4
Fig. 4

Mechanical arrangement in the prototype designed for a CO laser.

Fig. 5
Fig. 5

Beam intensity profiles taken at the position of the output lens (a) in the absence of both the slide and the filtering pinhole (i.e., the raw laser output profile); (b) with the attenuator slide inserted but still without the filtering pinhole; (c) with the complete attenuator/spatial filtering system at 650-mW output power; (d) as (c) but 65 mW; (e) as (c) but 6.5 mW; (f) as (c) but with 650 μW. (The resolution here is limited by detector noise.) Curve (g) is a mathematical Gaussian of the same width. (The heights of all traces have been adjusted for comparison.)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A ( u , υ ) + + a ( x , y ) exp [ 2 π i λ f ( u x + υ y ) ] d x d y ,
E ( x , y ) exp ( x 2 + y 2 w 2 ) ,
E ( r ) A exp ( r 2 w 2 ) + B cos 2 π s x .
E ( x , y ) = A exp ( x 2 + y 2 w 2 ) ; T ( x ) = B exp ( α x ) .
E ( x , y ) = E ( x , y ) · T ( x ) = A B exp [ ( x 2 + y 2 w 2 ) α x ] , E ( x , y ) = A B exp ( α 2 w 2 4 ) exp [ ( x + α 2 w 2 2 ) 2 + y 2 w 2 ] .
ln T ( x ) = ln T ( 0 ) + x d d x ln T x = 0 + x 2 2 d 2 d x 2 ln T x = 0 + x 3 6 d 3 d x 3 ln T x = 0 + ,

Metrics