Abstract

A laser radar system that is capable of remotely detecting oil spills, in the daytime and at night, in sea water has been developed. The system employs the second harmonic and fourth harmonic of a repetitively Q-switched Nd:YAG laser as the light sources and a gated optical multichannel analyzer as a high speed detection device. The results show that the comparison of backscattering spectra obtained from different samples enables us to detect and characterize oil spills in sea water. Raman backscattering and backscattered fluorescence of kerosene, light oil, heavy oil, and sea water have been investigated both in the laboratory and in the harbor of Seto Inland Sea of Japan by using the laser radar system described above. The SNR of this laser radar system for the detection of Raman backscattering of kerosene and fluorescence of oil is also described.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Fantasia, T. M. Hard, H. C. Ingrao, Report DOT-TSC-USCG-71-7 (1971).
  2. J. F. Fantasia, T. M. Hard, H. C. Ingrao, Proc. Inst. Environ. Sci. 18, 342 (1972).
  3. N. Ahmadjian, C. W. Brown, Environ. Sci. Technol. 7, 452 (1973).
    [CrossRef] [PubMed]
  4. H. H. Kim, P. T. Ryan, Ed. Proceedings of a symposium, “The Use of Lasers for Hydrographic Studies,” NASA-SP-375 (U.S. Government Printing Office, Washington, D.C., 1975).
  5. T. Sato, H. Kashiwagi, Ocean 75 Conf. Rec. 681 (1975).
  6. T. Sato, Y. Suzuki, H. Kashiwagi, M. Nanjo, Y. Kakui, presented at the Annual Meeting of the Optical Society of America, Toronto, Canada, 10–14 Oct. 1977[J. Opt. Soc. Am. 67, A1363 (1977)].
  7. An optical multichannel analyzer catalog offered by Princeton Applied Research Corporation.
  8. T. Sato, J. Appl. Phys. 48, 3120 (1977).
    [CrossRef]
  9. H. Inaba, T. Kobayashi, Opto-Electronics 4, 101 (1972).
    [CrossRef]
  10. H. H. Kim, Appl. Opt. 12, 1454 (1973).
    [CrossRef] [PubMed]
  11. D. H. Bock, E. H. Eckert, IEEE Trans. Geosci. Electron. GE-10, 119 (1972).
    [CrossRef]
  12. J. F. Fantasia, H. C. Ingrao, at Proceedings of the Ninth International Symposium on Remote Sensing of Environment 1711 (1974).

1977 (1)

T. Sato, J. Appl. Phys. 48, 3120 (1977).
[CrossRef]

1975 (1)

T. Sato, H. Kashiwagi, Ocean 75 Conf. Rec. 681 (1975).

1973 (2)

H. H. Kim, Appl. Opt. 12, 1454 (1973).
[CrossRef] [PubMed]

N. Ahmadjian, C. W. Brown, Environ. Sci. Technol. 7, 452 (1973).
[CrossRef] [PubMed]

1972 (3)

J. F. Fantasia, T. M. Hard, H. C. Ingrao, Proc. Inst. Environ. Sci. 18, 342 (1972).

H. Inaba, T. Kobayashi, Opto-Electronics 4, 101 (1972).
[CrossRef]

D. H. Bock, E. H. Eckert, IEEE Trans. Geosci. Electron. GE-10, 119 (1972).
[CrossRef]

Ahmadjian, N.

N. Ahmadjian, C. W. Brown, Environ. Sci. Technol. 7, 452 (1973).
[CrossRef] [PubMed]

Bock, D. H.

D. H. Bock, E. H. Eckert, IEEE Trans. Geosci. Electron. GE-10, 119 (1972).
[CrossRef]

Brown, C. W.

N. Ahmadjian, C. W. Brown, Environ. Sci. Technol. 7, 452 (1973).
[CrossRef] [PubMed]

Eckert, E. H.

D. H. Bock, E. H. Eckert, IEEE Trans. Geosci. Electron. GE-10, 119 (1972).
[CrossRef]

Fantasia, J. F.

J. F. Fantasia, T. M. Hard, H. C. Ingrao, Proc. Inst. Environ. Sci. 18, 342 (1972).

J. F. Fantasia, T. M. Hard, H. C. Ingrao, Report DOT-TSC-USCG-71-7 (1971).

J. F. Fantasia, H. C. Ingrao, at Proceedings of the Ninth International Symposium on Remote Sensing of Environment 1711 (1974).

Hard, T. M.

J. F. Fantasia, T. M. Hard, H. C. Ingrao, Proc. Inst. Environ. Sci. 18, 342 (1972).

J. F. Fantasia, T. M. Hard, H. C. Ingrao, Report DOT-TSC-USCG-71-7 (1971).

Inaba, H.

H. Inaba, T. Kobayashi, Opto-Electronics 4, 101 (1972).
[CrossRef]

Ingrao, H. C.

J. F. Fantasia, T. M. Hard, H. C. Ingrao, Proc. Inst. Environ. Sci. 18, 342 (1972).

J. F. Fantasia, T. M. Hard, H. C. Ingrao, Report DOT-TSC-USCG-71-7 (1971).

J. F. Fantasia, H. C. Ingrao, at Proceedings of the Ninth International Symposium on Remote Sensing of Environment 1711 (1974).

Kakui, Y.

T. Sato, Y. Suzuki, H. Kashiwagi, M. Nanjo, Y. Kakui, presented at the Annual Meeting of the Optical Society of America, Toronto, Canada, 10–14 Oct. 1977[J. Opt. Soc. Am. 67, A1363 (1977)].

Kashiwagi, H.

T. Sato, H. Kashiwagi, Ocean 75 Conf. Rec. 681 (1975).

T. Sato, Y. Suzuki, H. Kashiwagi, M. Nanjo, Y. Kakui, presented at the Annual Meeting of the Optical Society of America, Toronto, Canada, 10–14 Oct. 1977[J. Opt. Soc. Am. 67, A1363 (1977)].

Kim, H. H.

Kobayashi, T.

H. Inaba, T. Kobayashi, Opto-Electronics 4, 101 (1972).
[CrossRef]

Nanjo, M.

T. Sato, Y. Suzuki, H. Kashiwagi, M. Nanjo, Y. Kakui, presented at the Annual Meeting of the Optical Society of America, Toronto, Canada, 10–14 Oct. 1977[J. Opt. Soc. Am. 67, A1363 (1977)].

Sato, T.

T. Sato, J. Appl. Phys. 48, 3120 (1977).
[CrossRef]

T. Sato, H. Kashiwagi, Ocean 75 Conf. Rec. 681 (1975).

T. Sato, Y. Suzuki, H. Kashiwagi, M. Nanjo, Y. Kakui, presented at the Annual Meeting of the Optical Society of America, Toronto, Canada, 10–14 Oct. 1977[J. Opt. Soc. Am. 67, A1363 (1977)].

Suzuki, Y.

T. Sato, Y. Suzuki, H. Kashiwagi, M. Nanjo, Y. Kakui, presented at the Annual Meeting of the Optical Society of America, Toronto, Canada, 10–14 Oct. 1977[J. Opt. Soc. Am. 67, A1363 (1977)].

Appl. Opt. (1)

Environ. Sci. Technol. (1)

N. Ahmadjian, C. W. Brown, Environ. Sci. Technol. 7, 452 (1973).
[CrossRef] [PubMed]

IEEE Trans. Geosci. Electron. (1)

D. H. Bock, E. H. Eckert, IEEE Trans. Geosci. Electron. GE-10, 119 (1972).
[CrossRef]

J. Appl. Phys. (1)

T. Sato, J. Appl. Phys. 48, 3120 (1977).
[CrossRef]

Ocean 75 Conf. Rec. (1)

T. Sato, H. Kashiwagi, Ocean 75 Conf. Rec. 681 (1975).

Opto-Electronics (1)

H. Inaba, T. Kobayashi, Opto-Electronics 4, 101 (1972).
[CrossRef]

Proc. Inst. Environ. Sci. (1)

J. F. Fantasia, T. M. Hard, H. C. Ingrao, Proc. Inst. Environ. Sci. 18, 342 (1972).

Other (5)

J. F. Fantasia, T. M. Hard, H. C. Ingrao, Report DOT-TSC-USCG-71-7 (1971).

H. H. Kim, P. T. Ryan, Ed. Proceedings of a symposium, “The Use of Lasers for Hydrographic Studies,” NASA-SP-375 (U.S. Government Printing Office, Washington, D.C., 1975).

T. Sato, Y. Suzuki, H. Kashiwagi, M. Nanjo, Y. Kakui, presented at the Annual Meeting of the Optical Society of America, Toronto, Canada, 10–14 Oct. 1977[J. Opt. Soc. Am. 67, A1363 (1977)].

An optical multichannel analyzer catalog offered by Princeton Applied Research Corporation.

J. F. Fantasia, H. C. Ingrao, at Proceedings of the Ninth International Symposium on Remote Sensing of Environment 1711 (1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup of a laser radar with the second harmonic and fourth harmonic of a pulsed Nd:YAG laser as excitation sources.

Fig. 2
Fig. 2

Background noise due to sun light scatttered from water surface as a function of the gate pulse width applied to the detector.

Fig. 3
Fig. 3

Backscattering spectra of 10-mm thick oils obtained in the daytime using the laser radar system. Oils are contained in glass cells at the distance of 33 m. Excitation source: the second harmonic of a pulsed Nd:YAG laser. Accumulations: (a) and (b) 30-OMA scans; (c) 1-OMA scan.

Fig. 4
Fig. 4

Backscattering spectra of 20-μm thick oils obtained in the daytime using the laser radar system. Excitation source: the fourth harmonic of a pulsed Nd:YAG laser. Distance: 33 m. Accumulations: 10-OMA scans.

Fig. 5
Fig. 5

The maximum intensity of the received backscattering as a function of oil thickness for kerosene (○), light oil (□), and heavy oil (●). The solid lines show the data for the second harmonic of Nd:YAG laser excitation and 30 accumulations and the dashed lines those for the fourth harmonic excitation and 10 accumulations.

Fig. 6
Fig. 6

Estimated SNR of the present laser radar system for the detection of 2820-cm−1 Raman backscattering of kerosene and fluorescence of oils in the daytime. Excitation source is the second harmonic and fourth harmonic of a pulsed Nd:YAG laser. (a) Fluorescence of 20-μm thick heavy oil, second harmonic excitation; (b) fluorescence of 20-μm thick kerosene, fourth harmonic excitation; (c) Raman scattering of 10-mm thick kerosene, second harmonic excitation.

Fig. 7
Fig. 7

Backscattering spectra of kerosene (a), heavy oil (b), and sea water (c) obtained by using the laser radar system with the fourth harmonic of a pulsed Nd:YAG laser and accumulating signals of OMA 30 scans.

Fig. 8
Fig. 8

Backscattering spectra of oils obtained by using the laser radar system with the second harmonic of a pulsed Nd:YAG laser as a source and accumulating signals of OMA 10 scans: (a) backscattering spectrum of 1-cm thick light oil on sea water; (b) sea water; and (c) 1-mm thick heavy oil on sea water.

Metrics