Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Purcell, C. R. Pennypacker, Astrophys. J. 186, 705 (1973).
    [Crossref]
  2. P. R. Shapiro, Astrophys. J. 201, 151 (1975).
    [Crossref]
  3. E. M. Purcell, P. R. Shapiro, Astrophys. J. 214, 92 (1977).
    [Crossref]
  4. E. M. Purcell, Electricity and Magnetism, Berkeley Physics Course, Vol. 2 (McGraw-Hill, New York, 1965).
  5. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1976).
  6. D. K. Faddeev, V. N. Faddeeva, Computational Methods of Linear Algebra (Freeman, San Francisco, 1963).
  7. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  8. N. C. Wickramasinghe, Light Scattering Functions for Small Particles (Wiley, New York, 1973).

1977 (1)

E. M. Purcell, P. R. Shapiro, Astrophys. J. 214, 92 (1977).
[Crossref]

1975 (1)

P. R. Shapiro, Astrophys. J. 201, 151 (1975).
[Crossref]

1973 (1)

E. M. Purcell, C. R. Pennypacker, Astrophys. J. 186, 705 (1973).
[Crossref]

Faddeev, D. K.

D. K. Faddeev, V. N. Faddeeva, Computational Methods of Linear Algebra (Freeman, San Francisco, 1963).

Faddeeva, V. N.

D. K. Faddeev, V. N. Faddeeva, Computational Methods of Linear Algebra (Freeman, San Francisco, 1963).

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1976).

Pennypacker, C. R.

E. M. Purcell, C. R. Pennypacker, Astrophys. J. 186, 705 (1973).
[Crossref]

Purcell, E. M.

E. M. Purcell, P. R. Shapiro, Astrophys. J. 214, 92 (1977).
[Crossref]

E. M. Purcell, C. R. Pennypacker, Astrophys. J. 186, 705 (1973).
[Crossref]

E. M. Purcell, Electricity and Magnetism, Berkeley Physics Course, Vol. 2 (McGraw-Hill, New York, 1965).

Shapiro, P. R.

E. M. Purcell, P. R. Shapiro, Astrophys. J. 214, 92 (1977).
[Crossref]

P. R. Shapiro, Astrophys. J. 201, 151 (1975).
[Crossref]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Wickramasinghe, N. C.

N. C. Wickramasinghe, Light Scattering Functions for Small Particles (Wiley, New York, 1973).

Astrophys. J. (3)

E. M. Purcell, C. R. Pennypacker, Astrophys. J. 186, 705 (1973).
[Crossref]

P. R. Shapiro, Astrophys. J. 201, 151 (1975).
[Crossref]

E. M. Purcell, P. R. Shapiro, Astrophys. J. 214, 92 (1977).
[Crossref]

Other (5)

E. M. Purcell, Electricity and Magnetism, Berkeley Physics Course, Vol. 2 (McGraw-Hill, New York, 1965).

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1976).

D. K. Faddeev, V. N. Faddeeva, Computational Methods of Linear Algebra (Freeman, San Francisco, 1963).

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

N. C. Wickramasinghe, Light Scattering Functions for Small Particles (Wiley, New York, 1973).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Differential scattering cross section in units of k−2 at various scattering angles for a sphere composed of 4872 atoms. I1 and I2, respectively, refer to the components with electric field perpendicular and parallel to the scattering plane. The scattering parameter 2πa/λ equals 1.5, the bulk index of refraction is 1.33. The dots agree with Mie theory (solid lines) to better than 1%. The value for Qext is 0.321, compared with 0.322 given by Mie theory.

Fig. 2
Fig. 2

Same as Fig. 1 for a sphere composed of 15,600 atoms, scattering parameter = 3, and bulk index of refraction = 1.7–0.1i. Qext and Qscat from this computation are 3.80 and 2.74, respectively. The corresponding values given by Mie theory are 3.78 and 2.70.

Fig. 3
Fig. 3

Extinction and scattering efficiencies computed for a sphere composed of 4872 atoms. The last two points were calculated using a sphere composed of 15,600 atoms. The bulk index of refraction is 1.7–0.1i. The dots agree with Mie theory (solid lines) to better than 1%.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

P i α i j = 1 j i N exp ( i k r i j ) r i j 3 [ k 2 ( r i j × P j ) × r i j + ( 1 i k r i j ) r i j 2 × ( 3 P j · r i j r i j r i j 2 P j ) ] = E i ,
A P = E ,
A P = E * .
H ( P , P ) = 1 2 ( 1 2 P , A P E , P 1 2 P , A P + E * , P ) ,
K ( P , P ) = 1 2 ( P , A P E , P E * , P ) ,
δ H ( P , P ) = H ( P + δ P , P + δ P ) H ( P , P ) = 1 2 ( A P E , δ P A P E * , δ P , + 1 2 δ P , A δ P 1 2 δ P , A δ P ) ,
δ K ( P , P ) = K ( P + δ P , P + δ P ) K ( P , P ) = 1 2 ( A P E , δ P + A P E * , δ P + δ P , A δ P ) .
lim k 0 H ( P , P ) = lim k 0 Im K ( P , P ) = 0 ,
lim k 0 Re K ( P , P ) = 1 2 i = 1 N P i · P i α i i = 1 N P i · E i + i = 1 N 1 α i j = i + 1 N × ( P i · P j r i j 3 3 r i j · P i r i j · P j r i j 5 ) .
lim k 0 Re K ( P , P ) = minimum .
[ H ( P , P ) , K ( P , P ) = stationary ,
lim δ K 0 Re K ( P , P ) = 1 2 i = 1 N Re P i · E i * = energy ,
lim δ K 0 Im K ( P , P ) = 1 2 E 0 i = 1 N cos k x i P z i + sin k x i P z i = const × σ ext ,
x i = x i 1 + λ i s i 1 ,
r i = E A x i ,
s i = r i μ i s i 1 ,
λ i = s i 1 , r i 1 / s i 1 , A s i 1 .
μ i = r i , A s i 1 / s i 1 , A s i 1 .

Metrics