Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Jacobson et al., Inf. Disp. 12, 17 (1975).
  2. A. D. Gara, Appl. Opt. 16, 149 (1977).
    [CrossRef] [PubMed]
  3. R. W. Lewis, Appl. Opt. 17, 161 (1978).
    [CrossRef] [PubMed]
  4. A. B. Vander Lugt, IEEE Trans. Inf. Theory IT-10, 2 (1964).
  5. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  6. W. M. Gopfert, A. A. Read, Proc. Soc. Photo-Opt. Instrum. Eng. 83, 146 (1976).
  7. P. F. Gray, M. E. Barnett, Opt. Commun. 14, 46 (1975).
    [CrossRef]

1978 (1)

1977 (1)

1976 (1)

W. M. Gopfert, A. A. Read, Proc. Soc. Photo-Opt. Instrum. Eng. 83, 146 (1976).

1975 (2)

P. F. Gray, M. E. Barnett, Opt. Commun. 14, 46 (1975).
[CrossRef]

A. Jacobson et al., Inf. Disp. 12, 17 (1975).

1964 (1)

A. B. Vander Lugt, IEEE Trans. Inf. Theory IT-10, 2 (1964).

Barnett, M. E.

P. F. Gray, M. E. Barnett, Opt. Commun. 14, 46 (1975).
[CrossRef]

Gara, A. D.

Goodman, J.

J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

Gopfert, W. M.

W. M. Gopfert, A. A. Read, Proc. Soc. Photo-Opt. Instrum. Eng. 83, 146 (1976).

Gray, P. F.

P. F. Gray, M. E. Barnett, Opt. Commun. 14, 46 (1975).
[CrossRef]

Jacobson, A.

A. Jacobson et al., Inf. Disp. 12, 17 (1975).

Lewis, R. W.

Read, A. A.

W. M. Gopfert, A. A. Read, Proc. Soc. Photo-Opt. Instrum. Eng. 83, 146 (1976).

Vander Lugt, A. B.

A. B. Vander Lugt, IEEE Trans. Inf. Theory IT-10, 2 (1964).

Appl. Opt. (2)

IEEE Trans. Inf. Theory (1)

A. B. Vander Lugt, IEEE Trans. Inf. Theory IT-10, 2 (1964).

Inf. Disp. (1)

A. Jacobson et al., Inf. Disp. 12, 17 (1975).

Opt. Commun. (1)

P. F. Gray, M. E. Barnett, Opt. Commun. 14, 46 (1975).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

W. M. Gopfert, A. A. Read, Proc. Soc. Photo-Opt. Instrum. Eng. 83, 146 (1976).

Other (1)

J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Diagram of the interferometer used to measure the phase response of the image transducer.

Fig. 2
Fig. 2

(a) Cross-sectional diagram (not to scale) of the Hughes liquid crystal image transducer, and (b) the intensity response at an operating voltage of 4.1 V rms at 1 kHz.

Fig. 3
Fig. 3

The phase response (in multiples of 2π rad) as a function of input irradiance. The arrows indicate the relative configuration of the polarization of the coherent beam entering the device Ein, the molecular orientation at this point L, and the orientation of the analyzer Eout. The three conditions are obtained by rotating the transducer about the z axis.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

C ( ξ , η ) = g * ( x , y ) g ( x + ξ , y + g η ) d x d y ,
g ( x , y ) = A ( x , y ) exp [ i ϕ ( x , y ) ] .
A ( x , y ) = [ k 1 I ( x , y ) ] S / 2 , ϕ ( x , y ) = k 2 log [ I ( x , y ) I 0 ] ,
C ( ξ , η ) = a S / 2 [ k 1 I ( x , y ) ] S / 2 [ k 1 I ( ξ + x , η + y ) ] S / 2 × exp { i k 2 [ log I ( x , y ) I ( ξ + x , η + y ) log a ] } d x d y = a S / 2 exp ( i k 2 log a ) C ( ξ , η ) .
| C ( ξ , η ) | 2 = a S | C ( ξ , η ) | 2

Metrics