Abstract

Phase discriminators are devices widely used at rf and microwave frequencies to convert phase, or frequency, changes to amplitude changes. They find widespread use in generating audio feedback signals for frequency stabilization of oscillators and in angle demodulation applications. This paper demonstrates that similar devices, with similar functions, can be constructed in the visible region using optical fibers as delay-line elements. The operating principles of an optical-fiber delay-line phase discriminator are discussed. The sensitivity is shown to be proportional to the fiber propagation-delay time. A device working at 0.6328 μm is described and compared with predictions.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Fagot, P. Aubert, Frequency Modulation Theory (Pergamon, New York, 1961), pp. 310–313.
  2. E. H. Katz, H. H. Schreiber, Microwaves 26 (August1965).
  3. A. D. Robertson, G. W. Hurley, J. R. Yeager, Microwaves 27 (July1971).
  4. I. P. Kaminow, Appl. Opt. 5, 507 (1964).
    [CrossRef]
  5. R. L. Barger, M. S. Sorem, J. L. Hall, Appl. Phys. Lett. 22, 573 (1973).
    [CrossRef]
  6. D. B. Schilb, M. L. Dakss, Electron. Lett. 13, 257 (1977).
    [CrossRef]
  7. D. E. N. Davies, S. Kingsley, Electron. Lett. 10, 314 (1974).
    [CrossRef]
  8. M. Mostafavi, T. Itoh, R. Mittra, Appl. Opt. 14, 2190 (1975).
    [CrossRef] [PubMed]
  9. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1971), Chap. 10.
  10. A. Yariv, Introduction to Optical Electronics (Holt, Rinehart and Winston, New York, 1971), p. 38.

1977 (1)

D. B. Schilb, M. L. Dakss, Electron. Lett. 13, 257 (1977).
[CrossRef]

1975 (1)

1974 (1)

D. E. N. Davies, S. Kingsley, Electron. Lett. 10, 314 (1974).
[CrossRef]

1973 (1)

R. L. Barger, M. S. Sorem, J. L. Hall, Appl. Phys. Lett. 22, 573 (1973).
[CrossRef]

1971 (1)

A. D. Robertson, G. W. Hurley, J. R. Yeager, Microwaves 27 (July1971).

1965 (1)

E. H. Katz, H. H. Schreiber, Microwaves 26 (August1965).

1964 (1)

Aubert, P.

J. Fagot, P. Aubert, Frequency Modulation Theory (Pergamon, New York, 1961), pp. 310–313.

Barger, R. L.

R. L. Barger, M. S. Sorem, J. L. Hall, Appl. Phys. Lett. 22, 573 (1973).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1971), Chap. 10.

Dakss, M. L.

D. B. Schilb, M. L. Dakss, Electron. Lett. 13, 257 (1977).
[CrossRef]

Davies, D. E. N.

D. E. N. Davies, S. Kingsley, Electron. Lett. 10, 314 (1974).
[CrossRef]

Fagot, J.

J. Fagot, P. Aubert, Frequency Modulation Theory (Pergamon, New York, 1961), pp. 310–313.

Hall, J. L.

R. L. Barger, M. S. Sorem, J. L. Hall, Appl. Phys. Lett. 22, 573 (1973).
[CrossRef]

Hurley, G. W.

A. D. Robertson, G. W. Hurley, J. R. Yeager, Microwaves 27 (July1971).

Itoh, T.

Kaminow, I. P.

Katz, E. H.

E. H. Katz, H. H. Schreiber, Microwaves 26 (August1965).

Kingsley, S.

D. E. N. Davies, S. Kingsley, Electron. Lett. 10, 314 (1974).
[CrossRef]

Mittra, R.

Mostafavi, M.

Robertson, A. D.

A. D. Robertson, G. W. Hurley, J. R. Yeager, Microwaves 27 (July1971).

Schilb, D. B.

D. B. Schilb, M. L. Dakss, Electron. Lett. 13, 257 (1977).
[CrossRef]

Schreiber, H. H.

E. H. Katz, H. H. Schreiber, Microwaves 26 (August1965).

Sorem, M. S.

R. L. Barger, M. S. Sorem, J. L. Hall, Appl. Phys. Lett. 22, 573 (1973).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1971), Chap. 10.

Yariv, A.

A. Yariv, Introduction to Optical Electronics (Holt, Rinehart and Winston, New York, 1971), p. 38.

Yeager, J. R.

A. D. Robertson, G. W. Hurley, J. R. Yeager, Microwaves 27 (July1971).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

R. L. Barger, M. S. Sorem, J. L. Hall, Appl. Phys. Lett. 22, 573 (1973).
[CrossRef]

Electron. Lett. (2)

D. B. Schilb, M. L. Dakss, Electron. Lett. 13, 257 (1977).
[CrossRef]

D. E. N. Davies, S. Kingsley, Electron. Lett. 10, 314 (1974).
[CrossRef]

Microwaves (2)

E. H. Katz, H. H. Schreiber, Microwaves 26 (August1965).

A. D. Robertson, G. W. Hurley, J. R. Yeager, Microwaves 27 (July1971).

Other (3)

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1971), Chap. 10.

A. Yariv, Introduction to Optical Electronics (Holt, Rinehart and Winston, New York, 1971), p. 38.

J. Fagot, P. Aubert, Frequency Modulation Theory (Pergamon, New York, 1961), pp. 310–313.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

A simple delay-line phase discriminator useful for an electromagnetic signal from rf to optical frequencies.

Fig. 2
Fig. 2

Proposed optical discriminator employing single-mode fibers as delay line elements.

Fig. 3
Fig. 3

Photocurrent as a function of angular frequency with constant delay τ.

Fig. 4
Fig. 4

Experimental arrangement employing a multimode fiber.

Fig. 5
Fig. 5

Photocurrent produced with the apparatus in Fig. 4: (a) as a function of laser frequency, fiber length 3.04 m, constant tuning voltage; (b) as a function of laser frequency, fiber length 7.10 m, constant tuning voltage; (c) as a function of tuning voltage, fiber length 3.04 m, constant laser frequency.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E 1 = E 1 N η r 2 exp ( α L 1 2 ) cos [ ω ( t n L 1 c ) + 2 θ r + θ υ ] ,
E 2 = E 1 N η ( 1 r ) 2 exp ( α L 2 2 ) × cos [ ω ( t n L 2 c ) + 2 θ c ] .
r 2 ( 1 r ) 2 = exp [ α 2 ( L 1 L 2 ) ] .
P out = P max cos 2 [ ω n ( L 1 L 2 2 c ) + θ o ] ,
P max = 2 η exp ( L 2 2 ) { 1 + exp [ α 2 ( L 1 L 2 ) ] } 1 ,
θ o = θ r θ T + θ υ 2 .
τ = [ n ( L 1 L 2 ) ] / c .
i p = R P max cos 2 ( ω τ 2 + θ o ) ,
ω o = [ 1 / ( 2 τ ) ] ( m π 4 θ o ) ,
ω = ω o + Δ ω ,
i p = [ ( R P ) / 2 ] max τ Δ ω ,
G = [ ( d i p ) / ( d ω ) ] ω o
G = [ ( R P ) / 2 ] max τ .
r o < 0.16 [ ( λ Z ) / a ] ,

Metrics