Abstract

Mode coupling coefficients were measured in a multimode step-index fiber at different steps of the process of manufacturing a multistrand optical fiber cable. It was established that the mode coupling coefficients of the unsheathed fiber were relatively small and nearly the same for all the guided modes. By sheathing with nylon and by multistranding, the mode coupling coefficients between lower-order modes increased rapidly due to microbends, while in the vicinity of the highest-order mode, they remained unchanged. From impulse response waveforms and baseband frequency responses, it was observed that mode mixing effects became more noticeable as the mode coupling coefficients increased. Also, it was found that the excess loss caused by microbends was relatively small.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Horiguchi, H. Osanai, Electron. Lett. 12, 310 (1976).
    [CrossRef]
  2. S. Shimada, in Digest of Topical Meeting on Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977), paper ThA4.
  3. I. Jacobs, J. R. McCrory, in Ref. 12, paper ThB1.
  4. S. D. Personick, Bell Syst. Tech. J. 50, 843 (1971).
  5. D. Marcuse, Bell Syst. Tech. J. 51, 1199 (1972).
  6. J. Jeunhomme, P. Pochelle, Electron. Lett. 11, 425 (1975).
    [CrossRef]
  7. S. Kawakami, Electron. Lett. 13, 706 (1977).
    [CrossRef]
  8. K. Kitayama, M. Ikeda, Appl. Opt. (1978), in press.
  9. M. Tateda, M. Ikeda, Appl. Opt. 15, 2308 (1976).
    [CrossRef] [PubMed]
  10. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).
  11. R. Olshansky, Appl. Opt. 15, 483 (1976).
    [CrossRef] [PubMed]
  12. M. Ikeda, A. Sugimura, T. Ikegami, Appl. Opt. 15, 2116 (1976).
    [CrossRef] [PubMed]
  13. M. Ikeda, Y. Murakami, K. Kitayama, Appl. Opt. 16, 1045 (1977).
    [PubMed]
  14. D. Marcuse, Bell Syst. Tech. J. 51, 1785 (1972).
  15. S. Kawakami, M. Ikeda, to be published.
  16. I. Kobayashi, M. Koyama, K. Aoyama, Trans. Inst. Electron. Commun. Eng. 60-C, 4, 245 (1977).
  17. K. Inada, Opt. Commun. 19, 437 (1976).
    [CrossRef]

1977 (3)

S. Kawakami, Electron. Lett. 13, 706 (1977).
[CrossRef]

M. Ikeda, Y. Murakami, K. Kitayama, Appl. Opt. 16, 1045 (1977).
[PubMed]

I. Kobayashi, M. Koyama, K. Aoyama, Trans. Inst. Electron. Commun. Eng. 60-C, 4, 245 (1977).

1976 (5)

1975 (1)

J. Jeunhomme, P. Pochelle, Electron. Lett. 11, 425 (1975).
[CrossRef]

1972 (2)

D. Marcuse, Bell Syst. Tech. J. 51, 1199 (1972).

D. Marcuse, Bell Syst. Tech. J. 51, 1785 (1972).

1971 (1)

S. D. Personick, Bell Syst. Tech. J. 50, 843 (1971).

Aoyama, K.

I. Kobayashi, M. Koyama, K. Aoyama, Trans. Inst. Electron. Commun. Eng. 60-C, 4, 245 (1977).

Horiguchi, M.

M. Horiguchi, H. Osanai, Electron. Lett. 12, 310 (1976).
[CrossRef]

Ikeda, M.

Ikegami, T.

Inada, K.

K. Inada, Opt. Commun. 19, 437 (1976).
[CrossRef]

Jacobs, I.

I. Jacobs, J. R. McCrory, in Ref. 12, paper ThB1.

Jeunhomme, J.

J. Jeunhomme, P. Pochelle, Electron. Lett. 11, 425 (1975).
[CrossRef]

Kawakami, S.

S. Kawakami, Electron. Lett. 13, 706 (1977).
[CrossRef]

S. Kawakami, M. Ikeda, to be published.

Kitayama, K.

M. Ikeda, Y. Murakami, K. Kitayama, Appl. Opt. 16, 1045 (1977).
[PubMed]

K. Kitayama, M. Ikeda, Appl. Opt. (1978), in press.

Kobayashi, I.

I. Kobayashi, M. Koyama, K. Aoyama, Trans. Inst. Electron. Commun. Eng. 60-C, 4, 245 (1977).

Koyama, M.

I. Kobayashi, M. Koyama, K. Aoyama, Trans. Inst. Electron. Commun. Eng. 60-C, 4, 245 (1977).

Marcuse, D.

D. Marcuse, Bell Syst. Tech. J. 51, 1785 (1972).

D. Marcuse, Bell Syst. Tech. J. 51, 1199 (1972).

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).

McCrory, J. R.

I. Jacobs, J. R. McCrory, in Ref. 12, paper ThB1.

Murakami, Y.

Olshansky, R.

Osanai, H.

M. Horiguchi, H. Osanai, Electron. Lett. 12, 310 (1976).
[CrossRef]

Personick, S. D.

S. D. Personick, Bell Syst. Tech. J. 50, 843 (1971).

Pochelle, P.

J. Jeunhomme, P. Pochelle, Electron. Lett. 11, 425 (1975).
[CrossRef]

Shimada, S.

S. Shimada, in Digest of Topical Meeting on Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977), paper ThA4.

Sugimura, A.

Tateda, M.

Appl. Opt. (4)

Bell Syst. Tech. J. (3)

D. Marcuse, Bell Syst. Tech. J. 51, 1785 (1972).

S. D. Personick, Bell Syst. Tech. J. 50, 843 (1971).

D. Marcuse, Bell Syst. Tech. J. 51, 1199 (1972).

Electron. Lett. (3)

J. Jeunhomme, P. Pochelle, Electron. Lett. 11, 425 (1975).
[CrossRef]

S. Kawakami, Electron. Lett. 13, 706 (1977).
[CrossRef]

M. Horiguchi, H. Osanai, Electron. Lett. 12, 310 (1976).
[CrossRef]

Opt. Commun. (1)

K. Inada, Opt. Commun. 19, 437 (1976).
[CrossRef]

Trans. Inst. Electron. Commun. Eng. (1)

I. Kobayashi, M. Koyama, K. Aoyama, Trans. Inst. Electron. Commun. Eng. 60-C, 4, 245 (1977).

Other (5)

S. Kawakami, M. Ikeda, to be published.

S. Shimada, in Digest of Topical Meeting on Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977), paper ThA4.

I. Jacobs, J. R. McCrory, in Ref. 12, paper ThB1.

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).

K. Kitayama, M. Ikeda, Appl. Opt. (1978), in press.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Steady-state mode power distributions. The curves (i), (ii), and (iii) show the distributions of the fiber before and after sheathing with nylon and after multiple stranding, respectively.

Fig. 2
Fig. 2

Mode coupling coefficient values. The curves (i), (ii), and (iii) show the values of the fiber before and after sheathing with nylon, and after multiple stranding, respectively. The dotted line shows the theoretical value, where the correlation length D and standard deviation of curvature σ ¯ are 1.5 mm and 2.1 × 10−4 mm−1, respectively.

Fig. 3
Fig. 3

Measuring setup for impulse response waveform.

Fig. 4
Fig. 4

Impulse response waveforms of each mode group in the fiber before and after sheathing with nylon, whose fiber lengths are 1.9 km and 1.8 km, respectively, and where the mode group number (zeroth–ninth) corresponds to its emitting angle.

Fig. 5
Fig. 5

Mean delay times of each mode group pulse waveform shown in Fig. 4.

Fig. 6
Fig. 6

Impulse response waveforms of each mode group in the sheathed fiber before and after multiple stranding, whose fiber lengths are 1.2 km and 1.0 km, respectively.

Fig. 7
Fig. 7

Baseband frequency responses which are measured on the fiber before and after sheathing with nylon.

Fig. 8
Fig. 8

Baseband frequency responses which are measured on the sheathed fiber before and after multiple stranding.

Tables (2)

Tables Icon

Table I Fiber and Cable Parameters

Tables Icon

Table II 6 dB Baseband Bandwidth and Loss

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

h ( θ ) = 1 ( Δ θ ) 2 θ ( P 0 / θ ) 0 θ [ α ( u ) γ ] u P 0 ( u ) d u ,
Δ θ = λ / ( 4 a n ) ,
h ( θ ) = 4 n 2 a 2 k 2 C ( θ ) / π 4 ,
R ( u ) = σ ¯ 2 · exp [ ( u / D ) 2 ] ,
C ( θ ) = π 1 / 2 σ ¯ 2 D · exp [ ( π D 4 a θ ) 2 ] .
B L 0.55 .

Metrics