Abstract

Splicing and bending losses are compared among step, power-law, W, ring-shaped, and M·W index single-mode optical fibers. A product of normalized offset and tilt misalignments DNΦN is introduced to compare the permissible offset and tilt misalignments among these fibers. Permissible offset misalignment can be evaluated by DN/B1/3 under constant bending loss condition. Here, B denotes the bending loss parameter. Numerical calculations on these parameters reveal that the required splicing accuracy is nearly identical for step, power-law, and W fibers. An index dip at the core center seems to cause deleterious effects on the splicing loss, provided that the fiber bending loss is kept constant. The effects of profile parameters on DNΦN and DN/B1/3 are investigated in detail.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Kaiser, G. W. Tasker, W. G. French, J. R. Simpson, H. M. Presby, in Digest of Topical Meeting on Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977), paper TuD3-1.
  2. S. Kawakami, S. Nishida, IEEE J. Quantum Electron. QE-10, 879 (1974).
    [CrossRef]
  3. T. Nakahara, M. Hoshikawa, M. Yoshida, S. Suzuki, in Proceedings of Second European Conference on Optical Fiber Communication (1976), p. 149.
  4. J. Sakai, Pap. Tech. Group Opt. Quantum Electron Jpn. OQE76-45, 55 (1976).
  5. M. Miyagi, S. Nishida, Electron. Lett. 13, 274 (1977).
    [CrossRef]
  6. J. Sakai, T. Kimura, Opt. Lett. 1, 169 (1977).
    [CrossRef] [PubMed]
  7. J. Sakai, T. Kimura (to be published in Appl. Opt., 17, 0001Oct., 1978).
  8. J. Sakai, T. Kimura, Appl. Opt. 17, 1499 (1973).
    [CrossRef]
  9. W. A. Gambling, D. N. Payne, H. Matsumura, Electron. Lett. 13, 139 (1977).
    [CrossRef]
  10. D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).

1977 (4)

M. Miyagi, S. Nishida, Electron. Lett. 13, 274 (1977).
[CrossRef]

J. Sakai, T. Kimura, Opt. Lett. 1, 169 (1977).
[CrossRef] [PubMed]

W. A. Gambling, D. N. Payne, H. Matsumura, Electron. Lett. 13, 139 (1977).
[CrossRef]

D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).

1976 (1)

J. Sakai, Pap. Tech. Group Opt. Quantum Electron Jpn. OQE76-45, 55 (1976).

1974 (1)

S. Kawakami, S. Nishida, IEEE J. Quantum Electron. QE-10, 879 (1974).
[CrossRef]

1973 (1)

French, W. G.

P. Kaiser, G. W. Tasker, W. G. French, J. R. Simpson, H. M. Presby, in Digest of Topical Meeting on Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977), paper TuD3-1.

Gambling, W. A.

W. A. Gambling, D. N. Payne, H. Matsumura, Electron. Lett. 13, 139 (1977).
[CrossRef]

Hoshikawa, M.

T. Nakahara, M. Hoshikawa, M. Yoshida, S. Suzuki, in Proceedings of Second European Conference on Optical Fiber Communication (1976), p. 149.

Kaiser, P.

P. Kaiser, G. W. Tasker, W. G. French, J. R. Simpson, H. M. Presby, in Digest of Topical Meeting on Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977), paper TuD3-1.

Kawakami, S.

S. Kawakami, S. Nishida, IEEE J. Quantum Electron. QE-10, 879 (1974).
[CrossRef]

Kimura, T.

Marcuse, D.

D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).

Matsumura, H.

W. A. Gambling, D. N. Payne, H. Matsumura, Electron. Lett. 13, 139 (1977).
[CrossRef]

Miyagi, M.

M. Miyagi, S. Nishida, Electron. Lett. 13, 274 (1977).
[CrossRef]

Nakahara, T.

T. Nakahara, M. Hoshikawa, M. Yoshida, S. Suzuki, in Proceedings of Second European Conference on Optical Fiber Communication (1976), p. 149.

Nishida, S.

M. Miyagi, S. Nishida, Electron. Lett. 13, 274 (1977).
[CrossRef]

S. Kawakami, S. Nishida, IEEE J. Quantum Electron. QE-10, 879 (1974).
[CrossRef]

Payne, D. N.

W. A. Gambling, D. N. Payne, H. Matsumura, Electron. Lett. 13, 139 (1977).
[CrossRef]

Presby, H. M.

P. Kaiser, G. W. Tasker, W. G. French, J. R. Simpson, H. M. Presby, in Digest of Topical Meeting on Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977), paper TuD3-1.

Sakai, J.

J. Sakai, T. Kimura, Opt. Lett. 1, 169 (1977).
[CrossRef] [PubMed]

J. Sakai, Pap. Tech. Group Opt. Quantum Electron Jpn. OQE76-45, 55 (1976).

J. Sakai, T. Kimura, Appl. Opt. 17, 1499 (1973).
[CrossRef]

J. Sakai, T. Kimura (to be published in Appl. Opt., 17, 0001Oct., 1978).

Simpson, J. R.

P. Kaiser, G. W. Tasker, W. G. French, J. R. Simpson, H. M. Presby, in Digest of Topical Meeting on Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977), paper TuD3-1.

Suzuki, S.

T. Nakahara, M. Hoshikawa, M. Yoshida, S. Suzuki, in Proceedings of Second European Conference on Optical Fiber Communication (1976), p. 149.

Tasker, G. W.

P. Kaiser, G. W. Tasker, W. G. French, J. R. Simpson, H. M. Presby, in Digest of Topical Meeting on Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977), paper TuD3-1.

Yoshida, M.

T. Nakahara, M. Hoshikawa, M. Yoshida, S. Suzuki, in Proceedings of Second European Conference on Optical Fiber Communication (1976), p. 149.

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).

Electron. Lett. (2)

W. A. Gambling, D. N. Payne, H. Matsumura, Electron. Lett. 13, 139 (1977).
[CrossRef]

M. Miyagi, S. Nishida, Electron. Lett. 13, 274 (1977).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Kawakami, S. Nishida, IEEE J. Quantum Electron. QE-10, 879 (1974).
[CrossRef]

Opt. Lett. (1)

Pap. Tech. Group Opt. Quantum Electron Jpn. (1)

J. Sakai, Pap. Tech. Group Opt. Quantum Electron Jpn. OQE76-45, 55 (1976).

Other (3)

P. Kaiser, G. W. Tasker, W. G. French, J. R. Simpson, H. M. Presby, in Digest of Topical Meeting on Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977), paper TuD3-1.

T. Nakahara, M. Hoshikawa, M. Yoshida, S. Suzuki, in Proceedings of Second European Conference on Optical Fiber Communication (1976), p. 149.

J. Sakai, T. Kimura (to be published in Appl. Opt., 17, 0001Oct., 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Offset and tilt losses for the LP01 mode in a W fiber with γ = 0.4 and R n γ = 1.0. R n γ = (n e n1)/(n0n e ). υ c 1 = 3.00.

Fig. 2
Fig. 2

Offset and tilt losses for the LP01 mode in a ring-shaped fiber with δ = 0.6 and R = 1.0. R = (n m n0)/(n m n e ). υ c 1 = 2.74.

Fig. 3
Fig. 3

Offset and tilt losses for the LP01 mode in a M·W fiber with δ = 0.6, R = 1.0, γ = 0.4, and R n γ = 1.0. The definition of R and R n γ is given in Figs. 1 and 2. υ c 1 = 3.68.

Fig. 4
Fig. 4

Constant loss curves for offset and tilt losses, α O + α T . Loss curves are depicted for a step-index fiber with υ = υ c 1 by the solid lines. Permissible limits for 1-μm offset and 0.2° angular misalignments are shown by the straight broken lines for Δ = 0.2% and λ = 1.25 μm.

Fig. 5
Fig. 5

Constant loss curves of α O + α T for a ring-shaped fiber with δ = 0.6 and R = 1.0 at υ = υ c 1.

Fig. 6
Fig. 6

Normalized frequency dependence of the product D N Φ N for the LP01 mode in several types of fibers. α O = α T = 0.2 dB. W fiber is for γ = 0.4 and R n γ = 1.0, ring-shaped fiber is for δ = 0.6 and R = 1.0, and M·W fiber is for δ = 0.6, R = 1.0, γ = 0.4, and R n γ = 1.0. Triangle indicates the dual-mode fiber with α = 4.5 and υ = υ c 2 = 4.605.

Fig. 7
Fig. 7

Profile paramter effects on the product D N Φ N for power-law, W, and ring-shaped fibers. υ is chosen to be the LP11 mode cutoff υ c 1 for each fiber. α O = α T = 0.2 dB. The broken, dotted, long-dashed, and dot-and-dashed line curves indicate the effects of α, γ with R n γ = 1.0, R n γ with γ = 0.4, and δ with R = 1.0, respectively.

Fig. 8
Fig. 8

Product D N Φ N vs splice loss α O at α O = α T for the LP01 mode in step, parabolic, W, ring-shaped, and M·W fibers. υ = υ c 1. Parameters in W, ring-shaped, and M·W fibers are the same as in Fig. 6.

Fig. 9
Fig. 9

D N (υ c 1;0.2 dB) vs υ c 1 for step, power-law, W, ring-shaped, M·W, and dual-mode fibers. Parameters are chosen to be α = 1 ~ ∞ for the broken line curve, γ = 0 ~ 1 with R n γ = 1.0 for the dotted line curve, R n γ = 0 ~ 5 with γ = 0.4 for the long-dashed line curve, and δ = 0 ~ 0.8 with R = 1 for the dot-and-dashed line curve, respectively. The dual-mode fiber is shown for α = 4.5 and υ = υ c 2.

Fig. 10
Fig. 10

Normalized frequency dependence of the bending loss parameter B for the LP01 mode in step, parabolic, W, ring-shaped, and M·W fibers, α B = 0.1 dB/km. Curve symbols are identical with those in Fig. 6.

Fig. 11
Fig. 11

Permissible bending radius R* for the LP01 mode in a W fiber as a function of Δ and λ. γ = 0.4 and R n γ = 1.0. υ = υ c 1 = 3.00.

Fig. 12
Fig. 12

Normalized frequency dependence of D N /B1/3 for the LP01 mode in step, parabolic, W, ring-shaped, and M·W fibers. Each curve indicates the same index profile as in Fig. 6. The triangle shows the dual-mode fiber with α = 4.5 and υ = υ c 2 = 4.605.

Fig. 13
Fig. 13

Profile parameter effects on D N /B1/3 for the LP01 mode in power-law, W, and ring-shaped fibers. υ = υ c 1. α O = 0.2 dB. α B = 0.1 dB/km. Each curve indicates the same index distribution as in Fig. 7.

Tables (2)

Tables Icon

Table I Numerical Examples for Offset and Tilt Misalignments Under Constant Δ and λ

Tables Icon

Table II Numerical Examples for Offset and Tilt Misalignments Under Constant Bending Loss Condition

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

υ d ( α O ) / a = D N ( υ ; α O ) ,
( α T ) / ( 2 Δ ) 1 / 2 = Φ N ( υ ; α T ) .
d ( α O ) φ ( α T ) = λ 2 π n D N ( υ ; α O ) Φ N ( υ ; α T ) .
d ( α O ) φ ( α T ) = λ 10 π · α O n e ln 10 ( α O in dB )
D N ( υ ; α O ) Φ N ( υ ; α O ) = α O 5 ln 10
Δ 3 / 2 R * / λ = B ( υ ; α B ) .
Δ [ λ B ( υ ; α B ) / R O ] 2 / 3 = Δ L .
d ( α O ) R O 1 / 3 λ 2 / 3 2 2 π n D N ( υ ; α O ) [ B ( υ ; α B ) ] 1 / 3 = d max

Metrics