Abstract

The attenuated total reflection (ATR) angular spectra of a five-film system have been observed. Successive layers of Ag-LiF-Ag-LiF-Ag are evaporated onto the base of a glass prism. Surface plasma wave resonances corresponding to coupled oscillations at the plasma–dielectric interfaces were found for p-polarization. Guided light modes coupled between the two dielectric layers were observed in both p- and s-polarized spectra. If guided mode reflectance resonances occur at less than the critical angle they have associated with them resonance transmissions. In general the ATR resonances of the five-film system occur as doublets, which form a splitting of the resonances of a single dielectric slab bounded by Ag layers. The resonant oscillations are demonstrated by detailed calculations of the Poynting vector field and electric field oscillations, which also help in understanding the source of discrepancies between experimental and calculated ATR spectra. These discrepancies are thought to be due largely to the surface roughness of evaporated LiF films. The roughness is modeled as thin cermet layers at the LiF–Ag interfaces, and the optical constants of the cermets are calculated by the Maxwell Garnett theory. When the ATR spectra are then computed with the pseudolayers inserted, much improved agreement with experiment can be obtained.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Otto, Z. Phys. 216, 398 (1968).
    [CrossRef]
  2. E. Kretschmann, Z. Phys. 241, 313 (1971).
    [CrossRef]
  3. F. Abelès, T. Lopez-Rios, Opt. Commun. 11, 89 (1974).
    [CrossRef]
  4. G. J. Kovacs, G. D. Scott, Phys. Rev. B 16, 1297 (1977).
    [CrossRef]
  5. P. H. Lissberger, R. G. Nelson, Thin Solid Films 21, 159 (1974).
    [CrossRef]
  6. J. C. Maxwell Garnett, Philos. Trans. R. Soc. London, Ser. A: 203, 385 (1904); Philos. Trans. R. Soc. London, Ser. A: 205, 237 (1906).
    [CrossRef]
  7. G. J. Kovacs, G. D. Scott, Appl. Opt. 17 (Fall, 1978).
    [PubMed]
  8. G. J. Kovacs, Ph.D. Thesis; U. Toronto (1977).
  9. O. S. Heavens, S. D. Smith, J. Opt. Soc. Am. 47, 469 (1957).
    [CrossRef]
  10. G. D. Scott, in Vacuum Symposium Transactions 1956 (Pergamon, New York, 1957), p. 24.
  11. P. H. Lissberger, Rep. Prog. Phys. 33, 197 (1970).
    [CrossRef]
  12. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), p. 1ff.
  13. P. B. Johnson, R. W. Christy, Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  14. L. G. Schulz, J. Chem. Phys. 17, 1153 (1949).
    [CrossRef]

1978

G. J. Kovacs, G. D. Scott, Appl. Opt. 17 (Fall, 1978).
[PubMed]

1977

G. J. Kovacs, G. D. Scott, Phys. Rev. B 16, 1297 (1977).
[CrossRef]

1974

P. H. Lissberger, R. G. Nelson, Thin Solid Films 21, 159 (1974).
[CrossRef]

F. Abelès, T. Lopez-Rios, Opt. Commun. 11, 89 (1974).
[CrossRef]

1972

P. B. Johnson, R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

1971

E. Kretschmann, Z. Phys. 241, 313 (1971).
[CrossRef]

1970

P. H. Lissberger, Rep. Prog. Phys. 33, 197 (1970).
[CrossRef]

1968

A. Otto, Z. Phys. 216, 398 (1968).
[CrossRef]

1957

1949

L. G. Schulz, J. Chem. Phys. 17, 1153 (1949).
[CrossRef]

1904

J. C. Maxwell Garnett, Philos. Trans. R. Soc. London, Ser. A: 203, 385 (1904); Philos. Trans. R. Soc. London, Ser. A: 205, 237 (1906).
[CrossRef]

Abelès, F.

F. Abelès, T. Lopez-Rios, Opt. Commun. 11, 89 (1974).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), p. 1ff.

Christy, R. W.

P. B. Johnson, R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Heavens, O. S.

Johnson, P. B.

P. B. Johnson, R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Kovacs, G. J.

G. J. Kovacs, G. D. Scott, Appl. Opt. 17 (Fall, 1978).
[PubMed]

G. J. Kovacs, G. D. Scott, Phys. Rev. B 16, 1297 (1977).
[CrossRef]

G. J. Kovacs, Ph.D. Thesis; U. Toronto (1977).

Kretschmann, E.

E. Kretschmann, Z. Phys. 241, 313 (1971).
[CrossRef]

Lissberger, P. H.

P. H. Lissberger, R. G. Nelson, Thin Solid Films 21, 159 (1974).
[CrossRef]

P. H. Lissberger, Rep. Prog. Phys. 33, 197 (1970).
[CrossRef]

Lopez-Rios, T.

F. Abelès, T. Lopez-Rios, Opt. Commun. 11, 89 (1974).
[CrossRef]

Maxwell Garnett, J. C.

J. C. Maxwell Garnett, Philos. Trans. R. Soc. London, Ser. A: 203, 385 (1904); Philos. Trans. R. Soc. London, Ser. A: 205, 237 (1906).
[CrossRef]

Nelson, R. G.

P. H. Lissberger, R. G. Nelson, Thin Solid Films 21, 159 (1974).
[CrossRef]

Otto, A.

A. Otto, Z. Phys. 216, 398 (1968).
[CrossRef]

Schulz, L. G.

L. G. Schulz, J. Chem. Phys. 17, 1153 (1949).
[CrossRef]

Scott, G. D.

G. J. Kovacs, G. D. Scott, Appl. Opt. 17 (Fall, 1978).
[PubMed]

G. J. Kovacs, G. D. Scott, Phys. Rev. B 16, 1297 (1977).
[CrossRef]

G. D. Scott, in Vacuum Symposium Transactions 1956 (Pergamon, New York, 1957), p. 24.

Smith, S. D.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), p. 1ff.

Appl. Opt.

G. J. Kovacs, G. D. Scott, Appl. Opt. 17 (Fall, 1978).
[PubMed]

J. Chem. Phys.

L. G. Schulz, J. Chem. Phys. 17, 1153 (1949).
[CrossRef]

J. Opt. Soc. Am.

Opt. Commun.

F. Abelès, T. Lopez-Rios, Opt. Commun. 11, 89 (1974).
[CrossRef]

Philos. Trans. R. Soc. London, Ser. A

J. C. Maxwell Garnett, Philos. Trans. R. Soc. London, Ser. A: 203, 385 (1904); Philos. Trans. R. Soc. London, Ser. A: 205, 237 (1906).
[CrossRef]

Phys. Rev. B

P. B. Johnson, R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

G. J. Kovacs, G. D. Scott, Phys. Rev. B 16, 1297 (1977).
[CrossRef]

Rep. Prog. Phys.

P. H. Lissberger, Rep. Prog. Phys. 33, 197 (1970).
[CrossRef]

Thin Solid Films

P. H. Lissberger, R. G. Nelson, Thin Solid Films 21, 159 (1974).
[CrossRef]

Z. Phys.

A. Otto, Z. Phys. 216, 398 (1968).
[CrossRef]

E. Kretschmann, Z. Phys. 241, 313 (1971).
[CrossRef]

Other

G. D. Scott, in Vacuum Symposium Transactions 1956 (Pergamon, New York, 1957), p. 24.

G. J. Kovacs, Ph.D. Thesis; U. Toronto (1977).

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), p. 1ff.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Experimental and calculated p-polarized reflectances for sample 1. The measured film thicknesses and the wavelength of light used are indicated.

Fig. 2
Fig. 2

Electron micrographs of platinum shadow cast carbon replicas of the surface of a series of LiF films. The thicknesses of the films are indicated.

Fig. 3
Fig. 3

Experimental reflectance from Fig. 1 and calculated reflectance now using cermet layers.

Fig. 4
Fig. 4

Poynting vector field for first minimum of theoretical curve of Fig. 1.

Fig. 5
Fig. 5

Experimental and calculated s-polarized reflectances for sample 1.

Fig. 6
Fig. 6

Electric field oscillations for deep minimum of upper theoretical curve of Fig. 5. Oscillations are about a central axis with arbitrary units along the horizontal scale.

Fig. 7
Fig. 7

Experimental and calculated s-polarized reflectances at large angles for sample 2.

Fig. 8
Fig. 8

Electrical field oscillations for deep minimum of upper theoretical curve of Fig. 7. Oscillations are about a central axis with arbitrary units along the horizontal scale.

Fig. 9
Fig. 9

Experimental and calculated p-polarized reflectances at large angles for sample 3.

Fig. 10
Fig. 10

Experimental reflectance from Fig. 9 and calculated reflectance with the use of cermet layers.

Fig. 11
Fig. 11

Poynting vector field for third minimum of theoretical curve of Fig. 9.

Fig. 12
Fig. 12

Experimental and calculated s-polarized reflectances and transmittances at small angles for sample 3.

Fig. 13
Fig. 13

Experimental and reflectance and transmittance from Fig. 12, and calculated reflectance and transmittance with the use of cermet layers.

Fig. 14
Fig. 14

Experimental and calculated s-polarized reflectances at large angles for sample 3.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S = ( c / 8 π ) · Re ( E × H * ) .
C = D [ M ( 1 + 2 q ) + 2 D ( 1 q ) ] / [ M ( 1 q ) + D ( 2 + q ) ] ,

Metrics