Abstract

Large-aperture optical scintillometers [ Ting-i Wang et al., J. Opt. Soc. Am. 68, 334 ( 1978)] lose their calibration if they are sensitive to portions of the spatial spectrum of temperature fluctuations where κ−11/3 fails to hold. The model temperature spectrum having the bump [ R. J. Hill, J. Fluid Mech. 88, 541 ( 1978); R. J. Hill and S. F. Clifford, J. Opt. Soc. Am. 68, 892 ( 1978)] is used to find conditions under which the scintillometers maintain their calibration. We find that the aperture size D should be at least twenty times the inner scale l0 if the contribution of the spectral bump is to be ignored. For application in the surface layer, one needs the height above ground of the optical path to be much greater than three times the aperture size if outer-scale effects are to be negligible. It is shown that the inner scale dependence of a scintillometer having D/l0 ≃ 2.0 and the lack of such dependence for a scintillometer having D/l0 ≃ 20.0 can be used to estimate both l0 and Cn2 if the two systems are used simultaneously on the same path. A preliminary experiment was performed in the atmospheric surface layer with scintillometers having aperture sizes of 2.0 cm, 5.0 cm, and 15.0 cm; the results are consistent with the existence of the spectral bump. The inner scale is estimated by comparing data from the 2.0-cm and 15.0-cm systems. Using this inner scale, the Cn2 values from the 5.0-cm and 15.0-cm scintillometers are corrected for the spectral bump; the corrected values are in agreement. Other turbulence parameters are not deduced from the l0 and Cn2 estimates because the l0 values have been found to be insufficiently accurate.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Ting-i Wang, G. R. Ochs, S. F. Clifford, J. Opt. Soc. Am. 68, 334 (1978).
    [CrossRef]
  2. F. H. Champagne, C. A. Friehe, J. C. LaRue, J. C. Wyngaard, J. Atmos. Sci. 34, 515 (1977).
    [CrossRef]
  3. R. M. Williams, C. A. Paulson, J. Fluid Mech. 83, 547 (1977).
    [CrossRef]
  4. R. J. Hill, J. Fluid Mech. 88, 541 (1978).
    [CrossRef]
  5. R. J. Hill, Radio Sci.13, to appear Nov.–Dec. issue (1978).
  6. R. J. Hill, S. F. Clifford, J. Opt. Soc. Am. 68, 892 (1978).
    [CrossRef]
  7. J. C. Wyngaard, S. F. Clifford, J. Atmos. Sci. 35, 1204 (1978).
    [CrossRef]

1978 (4)

1977 (2)

F. H. Champagne, C. A. Friehe, J. C. LaRue, J. C. Wyngaard, J. Atmos. Sci. 34, 515 (1977).
[CrossRef]

R. M. Williams, C. A. Paulson, J. Fluid Mech. 83, 547 (1977).
[CrossRef]

Champagne, F. H.

F. H. Champagne, C. A. Friehe, J. C. LaRue, J. C. Wyngaard, J. Atmos. Sci. 34, 515 (1977).
[CrossRef]

Clifford, S. F.

Friehe, C. A.

F. H. Champagne, C. A. Friehe, J. C. LaRue, J. C. Wyngaard, J. Atmos. Sci. 34, 515 (1977).
[CrossRef]

Hill, R. J.

R. J. Hill, J. Fluid Mech. 88, 541 (1978).
[CrossRef]

R. J. Hill, S. F. Clifford, J. Opt. Soc. Am. 68, 892 (1978).
[CrossRef]

R. J. Hill, Radio Sci.13, to appear Nov.–Dec. issue (1978).

LaRue, J. C.

F. H. Champagne, C. A. Friehe, J. C. LaRue, J. C. Wyngaard, J. Atmos. Sci. 34, 515 (1977).
[CrossRef]

Ochs, G. R.

Paulson, C. A.

R. M. Williams, C. A. Paulson, J. Fluid Mech. 83, 547 (1977).
[CrossRef]

Wang, Ting-i

Williams, R. M.

R. M. Williams, C. A. Paulson, J. Fluid Mech. 83, 547 (1977).
[CrossRef]

Wyngaard, J. C.

J. C. Wyngaard, S. F. Clifford, J. Atmos. Sci. 35, 1204 (1978).
[CrossRef]

F. H. Champagne, C. A. Friehe, J. C. LaRue, J. C. Wyngaard, J. Atmos. Sci. 34, 515 (1977).
[CrossRef]

J. Atmos. Sci. (2)

F. H. Champagne, C. A. Friehe, J. C. LaRue, J. C. Wyngaard, J. Atmos. Sci. 34, 515 (1977).
[CrossRef]

J. C. Wyngaard, S. F. Clifford, J. Atmos. Sci. 35, 1204 (1978).
[CrossRef]

J. Fluid Mech. (2)

R. M. Williams, C. A. Paulson, J. Fluid Mech. 83, 547 (1977).
[CrossRef]

R. J. Hill, J. Fluid Mech. 88, 541 (1978).
[CrossRef]

J. Opt. Soc. Am. (2)

Other (1)

R. J. Hill, Radio Sci.13, to appear Nov.–Dec. issue (1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The normalized variances as functions of D/l0 for both single and tangent aperture scintillometers. Dashed curves for D/(λL)1/2 = 5.3 and 16.0; full curves for D/(λL)1/2 = 2.1.

Fig. 2
Fig. 2

The normalized variances as functions of (λL)1/2/l0 for both single and tangent aperture scintillometers. D/(λL)1/2 = 16.0, 5.3, and 2.1 for the dashed, dash–dot, and full curves, respectively.

Fig. 3
Fig. 3

The ratio in Eq. (7) for D1/D2 = 2.1/16.0 (full curve) and D1/D2 = 5.3/16.0 (dash–dot curve).

Fig. 4
Fig. 4

One-minute average values of Ξ for an 80-min run. Ξ(2 cm), solid curve; Ξ(5 cm), short dashed curve; Ξ(15 cm), long dashed curve.

Fig. 5
Fig. 5

Wind speed during the 80-min run.

Fig. 6
Fig. 6

The ratios Ξ(5 cm)/Ξ(15 cm) (dashed curve) and Ξ(2 cm)/Ξ(15 cm) (full curve) for the 80-min run.

Fig. 7
Fig. 7

The estimated inner scale during the 80-min run.

Fig. 8
Fig. 8

The corrected C n 2 from the 5-cm (full curve) and 15-cm (dashed curve) scintillometers.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

D r + D t ( λ L ) 1 / 2 > 2 ( σ χ 2 ) 5 / 3 ,
σ ln I 2 0.9 C n 2 L 3 D 7 / 3 ,
( I A I B ) 2 ¯ I ¯ 2 1.44 C n 2 L 3 D 7 / 3 ,
σ ln I 2 = 16 π 2 k 2 L 0 1 d u 0 d κ κ Φ n ( κ ) × sin 2 [ κ 2 L u ( 1 u ) 2 k ] [ 2 J 1 ( x 1 ) x 1 2 J 1 ( x 2 ) x 2 ] 2 ,
σ Δ I 2 [ ( I A I B ) 2 ] ¯ I ¯ 2
[ ( σ ln I 2 ) 1 D 1 7 / 3 ] / [ ( σ ln I 2 ) 2 D 2 7 / 3 ]
[ ( σ Δ I 2 ) 1 D 1 7 / 3 ] / [ ( σ Δ I 2 ) 2 D 2 7 / 3 ] ,
Ξ σ Δ I 2 / ( 1.44 L 3 D 7 / 3 )

Metrics