Abstract

Attenuation coefficients α(λ) for collimated quasi-monochromatic radiation passing through deionized filtered water were measured throughout the 418.6–640.3-nm wavelength region by use of a split-pulse laser method, which employs reference and sample cells arranged in a geometry similar to that of a Michelson interferometer. The radiant source was a pulsed wavelength-tunable dye laser possessing a relatively short coherence time. This paper includes descriptions of theoretical and experimental techniques applicable to the split-pulse laser method and includes a tabulation of α(λ) measured for deionized filtered water at 26.4 ± 1.7°C.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. M. Hale, M. R. Querry, Appl. Opt. 12, 555 (1973).
    [CrossRef] [PubMed]
  2. O. V. Kopelevich, Opt. Spectrosc. 41, 391 (1977).
  3. N. G. Jerlov, Optical Oceanography (Elsevier, Amsterdam, 1968), pp. 47–62.
  4. R. M. Goody, Atmospheric Radiation. 1: Theoretical Basis (Oxford U.P., London, 1964), pp 415–416.
  5. S. A. Sullivan, J. Opt. Soc. Am. 53, 962 (1963).
    [CrossRef]
  6. J. Lenoble, B. Saint-Guilly, C. R. Acad. Sci. Paris 240, 954 (1955).
  7. K. Kondratyev, Radiation in the Atmosphere; Vol. 12, International Geophysics Series (Academic P., New York, 1969), pp. 107–123.
    [CrossRef]
  8. J. A. Curcio, C. C. Petty, J. Opt. Soc. Am. 41, 302 (1951).
    [CrossRef]
  9. G. L. Clark, H. R. James, J. Opt. Soc. Am. 29, 43 (1939).
    [CrossRef]
  10. J. E. Tyler, R. C. Smith, W. H. Wilson, J. Opt. Soc. Am. 62, 83 (1972).
    [CrossRef]
  11. N. P. Grudinkina, Opt. Spektrosk. 1, 658 (1956).
  12. H. R. James, E. A. Birge, Trans. Wisc. Acad. Sci. 31, 1 (1938).
  13. M. R. Querry, in Tunable Laser Spectroscopy, Methods of Experimental Physics, Spectroscopy, Vol. 13, Part B, D. Williams, Ed. (Academic, New York, 1976), Chap. 5–27, pp. 309–311.
  14. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941), pp. 297–309.
  15. P. G. Cary, M. S. Thesis, U. Missouri—Kansas City (1976).
  16. M. Hass, J. W. Davisson, J. Opt. Soc. Am. 67, 622 (1977).
    [CrossRef]

1977

O. V. Kopelevich, Opt. Spectrosc. 41, 391 (1977).

M. Hass, J. W. Davisson, J. Opt. Soc. Am. 67, 622 (1977).
[CrossRef]

1973

1972

1963

1956

N. P. Grudinkina, Opt. Spektrosk. 1, 658 (1956).

1955

J. Lenoble, B. Saint-Guilly, C. R. Acad. Sci. Paris 240, 954 (1955).

1951

1939

1938

H. R. James, E. A. Birge, Trans. Wisc. Acad. Sci. 31, 1 (1938).

Birge, E. A.

H. R. James, E. A. Birge, Trans. Wisc. Acad. Sci. 31, 1 (1938).

Cary, P. G.

P. G. Cary, M. S. Thesis, U. Missouri—Kansas City (1976).

Clark, G. L.

Curcio, J. A.

Davisson, J. W.

Goody, R. M.

R. M. Goody, Atmospheric Radiation. 1: Theoretical Basis (Oxford U.P., London, 1964), pp 415–416.

Grudinkina, N. P.

N. P. Grudinkina, Opt. Spektrosk. 1, 658 (1956).

Hale, G. M.

Hass, M.

James, H. R.

G. L. Clark, H. R. James, J. Opt. Soc. Am. 29, 43 (1939).
[CrossRef]

H. R. James, E. A. Birge, Trans. Wisc. Acad. Sci. 31, 1 (1938).

Jerlov, N. G.

N. G. Jerlov, Optical Oceanography (Elsevier, Amsterdam, 1968), pp. 47–62.

Kondratyev, K.

K. Kondratyev, Radiation in the Atmosphere; Vol. 12, International Geophysics Series (Academic P., New York, 1969), pp. 107–123.
[CrossRef]

Kopelevich, O. V.

O. V. Kopelevich, Opt. Spectrosc. 41, 391 (1977).

Lenoble, J.

J. Lenoble, B. Saint-Guilly, C. R. Acad. Sci. Paris 240, 954 (1955).

Petty, C. C.

Querry, M. R.

G. M. Hale, M. R. Querry, Appl. Opt. 12, 555 (1973).
[CrossRef] [PubMed]

M. R. Querry, in Tunable Laser Spectroscopy, Methods of Experimental Physics, Spectroscopy, Vol. 13, Part B, D. Williams, Ed. (Academic, New York, 1976), Chap. 5–27, pp. 309–311.

Saint-Guilly, B.

J. Lenoble, B. Saint-Guilly, C. R. Acad. Sci. Paris 240, 954 (1955).

Smith, R. C.

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941), pp. 297–309.

Sullivan, S. A.

Tyler, J. E.

Wilson, W. H.

Appl. Opt.

C. R. Acad. Sci. Paris

J. Lenoble, B. Saint-Guilly, C. R. Acad. Sci. Paris 240, 954 (1955).

J. Opt. Soc. Am.

Opt. Spectrosc.

O. V. Kopelevich, Opt. Spectrosc. 41, 391 (1977).

Opt. Spektrosk.

N. P. Grudinkina, Opt. Spektrosk. 1, 658 (1956).

Trans. Wisc. Acad. Sci.

H. R. James, E. A. Birge, Trans. Wisc. Acad. Sci. 31, 1 (1938).

Other

M. R. Querry, in Tunable Laser Spectroscopy, Methods of Experimental Physics, Spectroscopy, Vol. 13, Part B, D. Williams, Ed. (Academic, New York, 1976), Chap. 5–27, pp. 309–311.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941), pp. 297–309.

P. G. Cary, M. S. Thesis, U. Missouri—Kansas City (1976).

N. G. Jerlov, Optical Oceanography (Elsevier, Amsterdam, 1968), pp. 47–62.

R. M. Goody, Atmospheric Radiation. 1: Theoretical Basis (Oxford U.P., London, 1964), pp 415–416.

K. Kondratyev, Radiation in the Atmosphere; Vol. 12, International Geophysics Series (Academic P., New York, 1969), pp. 107–123.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

A block diagram of the instrumentation used to measure the attenuation coefficient α(λ) of deionized filtered water in the 418.6–640.3-nm region. Further details are provided in Sec. II.

Fig. 2
Fig. 2

A graphical comparison of α(λ) (solid circles) from the present investigation with α(λ) and α(λ)a obtained by previous investigators. Further details are provided in Sec. IV.

Tables (1)

Tables Icon

Table I Wavelength λ, Attenuation Coefficients α(λ), Rayleigh Scattering Coefficients α(λ)ms, the Sum of the Absorption Coefficient α(λ)a, and the Particle Scattering Coefficient α(λ)ps, and Wavenumber λ−1 for Deionized Filtered Water

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

α ( λ ) = 1 2 ( L r L s ) ln [ A ( λ ) / | B ( λ ) | ] .
( 2 4 π μ σ c 2 t μ c 2 2 t 2 ) ψ = 0 ,
E = E 0 exp [ i ( κ · r ω t ) ] ,
H = c ( κ × E ) / μ ω ,
κ = μ ω 2 c 2 + i 4 π μ σ ω c 2 ,
κ r κ i } = [ ± γ + ( γ 2 + δ 2 ) 1 / 2 2 ] 1 / 2 ,
γ = [ ω 2 ( μ r r μ i i ) 4 π ω ( μ i σ r + μ r σ i ) ] / c 2 ,
δ = [ ω 2 ( μ i r + μ r i ) + 4 π ω ( μ r r μ i σ i ) ] / c 2 ,
n + i k = c ( κ r + i κ i ) / ω .
I = I 0 exp [ α a ( z z 0 ) ]
κ 2 = ( ω 2 + i 2 b ω ) / a ,
a 2 = c 2 / r ,
b = ( ω i ) / ( 2 r ) .
I = I o exp [ ( α a + α s ) ( z z 0 ) ] ,
α s = α p s + α m s ,
α ( ω ) m s = k T β 6 π ( ω c ) 4 | [ ( ω ) 1 ] [ ( ω ) + 2 ] 3 | 2 ,
α ( ω ) m s = k T β 54 π ( ω c ) 4 { [ n ( ω ) 2 1 ] [ n ( ω ) 2 + 2 ] } 2 .
ψ ( z , t ) = 1 2 exp ( b z / a ) f ( t + z / a ) + 1 2 exp ( b z / a ) f ( t z / a ) + a 2 exp ( b t ) t z / a t + z / a f ( β ) exp ( b β ) J 0 { ( b / a ) [ z 2 a 2 ( t β ) 2 ] 1 / 2 } d β + a 2 exp ( b t ) t z / a t + z / a F ( β ) exp ( b β ) J 0 × { ( b / a ) [ z 2 a 2 ( t β ) 2 ] 1 / 2 } d β ,
E = E 0 exp { i [ κ · r ω t + ϕ ( t ) ] } ,
ψ ( z , t ) = A [ exp ( i κ z ) + exp ( i κ z ) ] exp ( i ω t )
| t | τ 0 / 2 ,
ψ ( z , t ) = 0
ψ ( z , t ) = A ( exp { [ b z / a i ω ( t + z / a ) ] } + exp [ b z / a i ω ( t z / a ) ] ) + a A exp ( b t ) t z / a t + z / a exp [ ( b i ω ) ] β J 0 × { ( b / a ) [ z 2 a 2 ( t β ) 2 ] 1 / 2 } d β ,
2 × 10 10 cm / sec < a < 3 × 10 10 cm / sec ,
2 b / a = α a < 4 × 10 3 cm 1 .
ψ ( z , t ) + = { A exp ( b z / a ) exp [ i ω ( t z / a ) ] , | t | τ 0 / 2 0 , | t | > τ 0 / 2 .
I = I 0 exp ( 2 b z / a ) .

Metrics