Abstract

A single-threshold processor is derived for a wide class of classical binary decision problems involving the likelihood-ratio detection of a signal embedded in noise. The class of problems we consider encompasses the case of multiple independent (but not necessarily identically distributed) observations of a nonnegative (nonpositive) signal, embedded in additive, independent, and noninterfering noise, where the range of the signal and noise is discrete. We show that a comparison of the sum of the observations with a unique threshold comprises optimum processing, if a weak condition on the noise is satisfied, independent of the signal. Examples of noise densities that satisfy and violate our condition are presented. The results are applied to a generalized photocounting optical communication system, and it is shown that most components of the system can be incorporated into our model. The continuous case is treated elsewhere [ IEEE Trans. Inf. Theory IT-25, (March , 1979)].

© 1978 Optical Society of America

Full Article  |  PDF Article
Related Articles
Optimum photon detection with a simple counting processor

Malvin Carl Teich, Paul R. Prucnal, and Giovanni Vannucci
Opt. Lett. 1(6) 208-210 (1977)

Recognizing Patterns in Photographs

C. K. Rushforth
Appl. Opt. 4(4) 379-381 (1965)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (60)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription