Abstract

A novel ir measurement facility that generates a 43-cm diam collimated beam of radiant flux in a simulated exoatmospheric environment has been built and evaluated. The broadband and spectral irradiance of the beam was measured with a calibrated integral three-grating spectroradiometer. The irradiance values cover a range of 108, with near Planckian distribution at higher flux densities. The beam source can also generate monochromatic radiation tunable from 2 μm to 32 μm. Diffraction losses at the source aperture have been estimated.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Meier, A. B. Dauger, Appl. Opt. 17, 3541 (1978).
    [CrossRef] [PubMed]
  2. R. H. Meier, Appl. Opt. 14, 1021 (1975).
    [CrossRef] [PubMed]
  3. R. H. Meier, A. B. Dauger, Opt. Eng. 14, SR-144 (1975); Opt. Eng. 14, SR-182 (1975).
  4. W. B. Fussell, Tables of Diffraction Losses, NBS Technical Note 594-8 (U.S. Government Printing Office, Washington, D.C., 1974).

1978 (1)

1975 (2)

R. H. Meier, Appl. Opt. 14, 1021 (1975).
[CrossRef] [PubMed]

R. H. Meier, A. B. Dauger, Opt. Eng. 14, SR-144 (1975); Opt. Eng. 14, SR-182 (1975).

Dauger, A. B.

R. H. Meier, A. B. Dauger, Appl. Opt. 17, 3541 (1978).
[CrossRef] [PubMed]

R. H. Meier, A. B. Dauger, Opt. Eng. 14, SR-144 (1975); Opt. Eng. 14, SR-182 (1975).

Fussell, W. B.

W. B. Fussell, Tables of Diffraction Losses, NBS Technical Note 594-8 (U.S. Government Printing Office, Washington, D.C., 1974).

Meier, R. H.

Appl. Opt. (2)

Opt. Eng. (1)

R. H. Meier, A. B. Dauger, Opt. Eng. 14, SR-144 (1975); Opt. Eng. 14, SR-182 (1975).

Other (1)

W. B. Fussell, Tables of Diffraction Losses, NBS Technical Note 594-8 (U.S. Government Printing Office, Washington, D.C., 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Optomechanical layout.

Fig. 2
Fig. 2

Optical assembly within the vacuum tank. The top halves of the tank and the shroud have been removed. On the left side are the scan mirrors with their cooling tube labyrinths. The collimator’s secondary mirror is just to the right of the scan mirrors. On the right is the table containing the shrouded source assembly and spectroradiometer. The collimator’s primary mirror is beneath the table.

Fig. 3
Fig. 3

Facility with some support equipment.

Fig. 4
Fig. 4

Schematic layout of the source assembly and spectroradiometer.

Fig. 5
Fig. 5

Spectral responsivity of the bolometer.

Fig. 6
Fig. 6

Specific responsivity of the spectrometer.

Fig. 7
Fig. 7

Spectral irradiance, specular mode.

Fig. 8
Fig. 8

Spectral irradiance, filter mode.

Fig. 9
Fig. 9

Spectral irradiance, dual filter mode.

Fig. 10
Fig. 10

Spectral irradiance, integrating cavity mode.

Fig. 11
Fig. 11

Irradiance of test beam with source in monochromator mode. The sharp discontinuities at 8.5 μm and 16.5 μm indicate the grating change points.

Fig. 12
Fig. 12

Schematic diagram of the bolometer face-to-face calibration arrangement. The parameters for calculation of the diffraction loss are shown on the figure.

Fig. 13
Fig. 13

Diffraction loss for the bolometer calibration arrangement in Fig. 12.

Tables (3)

Tables Icon

Table I List of Irradiance Plots for Each Mode of the Source Assembly

Tables Icon

Table II Total Irradiance Blackbody Temperature:300 K

Tables Icon

Table III Percent Source Diffraction Loss, Specular Mode

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

R ( λ ) = R r ( λ ) ( V W 1 ) .
V = R G 0 r ( λ ) ( λ ) M λ ( λ , T ) d λ ( V ) ,
R SR ( λ ) Δ λ SR = π F 2 A s A SR × V ( λ , T ) M λ ( λ , T ) ( λ ) × 1 [ ρ AU ( λ ) ] 3 [ ρ OCLI ( λ ) ] 6 ( V W 1 μ m ) ,
E λ i ( λ , T ) = V i ( λ , T ) A SR R SR ( λ ) Δ λ SR ( W cm 2 μ m 1 ) .
E ( B , T ) i = λ 1 λ 2 E λ i ( λ , T ) d λ ( W cm 2 ) .
E ( T ) = E ( T , 0.35,8.0 ) ( A IC 9.931 × 10 4 ) ( A BB 0.5028 ) ( W cm 2 ) .
E M ( λ , T ) = V M ( λ , T ) A SR [ ρ AU ( λ ) ] 3 [ ρ OCLI ( λ ) ] 5 R ( λ ) G ( W cm 2 ) .

Metrics