Abstract

Design features of a measurement facility for the prelaunch evaluation of ir space sensors are described. After a listing of the facility’s major capabilities, an analysis of its internal calibration process is given. This is followed by a discussion of test beam characteristics and some performance limitations. Concepts for improvements are presented.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Meier, Appl. Opt. 14, 1021 (1975).
    [CrossRef] [PubMed]
  2. R. H. Meier, A. B. Dauger, Opt. Eng. 14, SR-144 (1975); Opt. Eng. 14, SR-182 (1975).
  3. R. H. Meier, A. B. Dauger, Appl. Opt. 17, 3547 (1978).
    [CrossRef] [PubMed]
  4. The determination of the relative spectral responsivity of the radiometer r′(λ) must be performed prior to actual chamber calibration. It consists of two measurement operations. One is the determination of the spectral dependence of the reflectance of the radiometer’s optical surfaces or, if this is not practical, of identically manufactured sample surfaces. To exclude errors that could arise from a possible temperature dependence of this quantity, the measurement should be performed with the measured samples at a temperature of about 25 K. The second measurement operation is the determination of the detector’s relative spectral responsivity r(λ). The setup for this measurement should duplicate the beam incidence geometry of the radiometer. Both measurement operations must be carried out over the entire wavelength interval of nonzero detector responsivity.
  5. R. C. Jennison, Fourier Transforms and Convolutions for the Experimentalist (Pergamon, Oxford, 1961).
  6. E. H. Linfoot, Fourier Methods in Optical Image Evaluation (Focal Press, London, 1964).
  7. W. R. Blevin, Metrologia 6, 39 (1970).
    [CrossRef]
  8. W. H. Steel, M. De, J. A. Bell, J. Opt. Soc. Am. 62, 1099 (1972).
    [CrossRef]
  9. L. P. Boivin, Appl. Opt. 15, 1204 (1976).
    [CrossRef] [PubMed]
  10. R. Chen, “Curvature of Composite Plate Due to Thermal Contraction,” Informal McDonnell Douglas Astronautics Co. Communication (1976).
  11. J. E. Gallagher, “Analysis of Spectroradiometer Telescope with PAGOS Program,” Informal McDonnell Douglas Astronautics Co. Communication (1976).
  12. A. P. Thorne, Spectrophysics (Chapman and Hall, London, 1974), Chap. 5 and 6.

1978 (1)

1976 (1)

1975 (2)

R. H. Meier, Appl. Opt. 14, 1021 (1975).
[CrossRef] [PubMed]

R. H. Meier, A. B. Dauger, Opt. Eng. 14, SR-144 (1975); Opt. Eng. 14, SR-182 (1975).

1972 (1)

1970 (1)

W. R. Blevin, Metrologia 6, 39 (1970).
[CrossRef]

Bell, J. A.

Blevin, W. R.

W. R. Blevin, Metrologia 6, 39 (1970).
[CrossRef]

Boivin, L. P.

Chen, R.

R. Chen, “Curvature of Composite Plate Due to Thermal Contraction,” Informal McDonnell Douglas Astronautics Co. Communication (1976).

Dauger, A. B.

R. H. Meier, A. B. Dauger, Appl. Opt. 17, 3547 (1978).
[CrossRef] [PubMed]

R. H. Meier, A. B. Dauger, Opt. Eng. 14, SR-144 (1975); Opt. Eng. 14, SR-182 (1975).

De, M.

Gallagher, J. E.

J. E. Gallagher, “Analysis of Spectroradiometer Telescope with PAGOS Program,” Informal McDonnell Douglas Astronautics Co. Communication (1976).

Jennison, R. C.

R. C. Jennison, Fourier Transforms and Convolutions for the Experimentalist (Pergamon, Oxford, 1961).

Linfoot, E. H.

E. H. Linfoot, Fourier Methods in Optical Image Evaluation (Focal Press, London, 1964).

Meier, R. H.

Steel, W. H.

Thorne, A. P.

A. P. Thorne, Spectrophysics (Chapman and Hall, London, 1974), Chap. 5 and 6.

Appl. Opt. (3)

J. Opt. Soc. Am. (1)

Metrologia (1)

W. R. Blevin, Metrologia 6, 39 (1970).
[CrossRef]

Opt. Eng. (1)

R. H. Meier, A. B. Dauger, Opt. Eng. 14, SR-144 (1975); Opt. Eng. 14, SR-182 (1975).

Other (6)

R. Chen, “Curvature of Composite Plate Due to Thermal Contraction,” Informal McDonnell Douglas Astronautics Co. Communication (1976).

J. E. Gallagher, “Analysis of Spectroradiometer Telescope with PAGOS Program,” Informal McDonnell Douglas Astronautics Co. Communication (1976).

A. P. Thorne, Spectrophysics (Chapman and Hall, London, 1974), Chap. 5 and 6.

The determination of the relative spectral responsivity of the radiometer r′(λ) must be performed prior to actual chamber calibration. It consists of two measurement operations. One is the determination of the spectral dependence of the reflectance of the radiometer’s optical surfaces or, if this is not practical, of identically manufactured sample surfaces. To exclude errors that could arise from a possible temperature dependence of this quantity, the measurement should be performed with the measured samples at a temperature of about 25 K. The second measurement operation is the determination of the detector’s relative spectral responsivity r(λ). The setup for this measurement should duplicate the beam incidence geometry of the radiometer. Both measurement operations must be carried out over the entire wavelength interval of nonzero detector responsivity.

R. C. Jennison, Fourier Transforms and Convolutions for the Experimentalist (Pergamon, Oxford, 1961).

E. H. Linfoot, Fourier Methods in Optical Image Evaluation (Focal Press, London, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Low background measurement facility.

Fig. 2
Fig. 2

Radiometric calibration flow diagram.

Fig. 3
Fig. 3

One-dimensional convolution of finite source aperture with Airy disk pattern of point source. Aperture radius 0.05 mrad.

Fig. 4
Fig. 4

One-dimensional convolution of finite source aperture with Airy disk pattern of point source. Aperture radius 0.018 mrad.

Fig. 5
Fig. 5

Source assembly.

Fig. 6
Fig. 6

Schematic of source optics minimizing diffraction effects.

Fig. 7
Fig. 7

Presently existing spectroradiometer configuration.

Fig. 8
Fig. 8

Increase in focal length and change in back focus position as function of percentage increase in radius of curvature of primary.

Fig. 9
Fig. 9

Schematic of modified spectroradiometer with reference source assembly.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

R S R ( T ) = V ( T ) G ϕ R ( T ) = R S R 0 r ( λ ) ϕ λ ( λ , T ) d λ 0 ϕ λ ( λ , T ) d λ ( V W 1 ) ,
R S R = V ( T ) G 0 r ( λ ) ϕ λ ( λ , T ) d λ ( V W 1 )
R S R ( λ ) = R S R r ( λ ) ( V W 1 )
ϕ λ ( λ , T ) = λ L ( ω , A , T ) d ω d A ( W μ m 1 ) .
E λ ( λ , T ) = A R ( λ ) π F R C 2 M λ ( λ , T ) ( W cm 2 μ m 1 ) ,
V ( λ , T ) = R S R ( λ ) ϕ λ ( λ , T ) Δ λ S R ( V ) .
R S R ( λ ) Δ λ S R = V ( λ , T ) π F R C 2 A R A S R ( λ ) M λ ( λ , T ) ( V W 1 μ m ) ,
E s ( T ) = 0 E s , λ ( λ , T ) d λ .
E s , λ ( λ , T ) = V s ( λ , T ) [ R S R ( λ ) Δ λ S R A S R ] 1 ( W cm 2 μ m 1 ) .
E s ( B , T ) = E s , λ ( λ , T ) d λ ( W cm 2 ) .
E M ( λ , T ) = E M , λ ( λ , T ) Δ λ M = V M ( λ , T ) [ R S R r ( λ ) A S R G ] 1 ( W cm 2 ) .
E M ( λ , T ) = E M , λ ( λ , T ) Δ λ M = V M , S P ( λ , T ) [ R S R ( λ ) A S R ] 1 ( W cm 2 ) .
θ = sin 1 ( 2.44 λ D ) 2.44 λ D ,

Metrics