Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Reid, K. Siemsen, Appl. Phys. Lett. 29, 250 (1976); J. Appl. Phys. 48, 2712 (1977).
    [CrossRef]
  2. W. Berger, K. Siemsen, J. Reid, Rev. Sci. Instrum. 48, 1031 (1977).
    [CrossRef]
  3. P. Lavigne, J.-L. Lachambre, G. Otis, Opt. Lett. 2, 127 (1978); J. Appl. Phys. to be published.
    [CrossRef] [PubMed]
  4. B. J. Feldman, R. A. Fisher, C. R. Pollock, S. W. Simons, R. G. Tercovich, Opt. Lett. 2, 16 (1978).
    [CrossRef] [PubMed]
  5. K. N. Rao, Ohio State U.; private communication.
  6. F. W. Taylor, J. Quant. Spectrosc. Radiat. Transfer 13, 1181 (1973).
    [CrossRef]
  7. N. Nereson, J. Mol. Spectrosc. 69, 489 (1978).
    [CrossRef]
  8. J. J. Hillman, T. Kostiuk, D. Buhl, J. L. Faris, J. C. Novaco, M. J. Mumma, Opt. Lett. 1, 81 (1977).
    [CrossRef] [PubMed]
  9. J. Reid, J. Shewchun, B. K. Garside, in preparation.
  10. C. O. Weiss, M. Grinda, K. Siemsen, IEEE J. Quantum Electron. QE-13, 892 (1977).
    [CrossRef]
  11. K. J. Siemsen, B. G. Whitford, Opt. Commun. 22, 11 (1977).
    [CrossRef]

1978 (3)

1977 (4)

W. Berger, K. Siemsen, J. Reid, Rev. Sci. Instrum. 48, 1031 (1977).
[CrossRef]

C. O. Weiss, M. Grinda, K. Siemsen, IEEE J. Quantum Electron. QE-13, 892 (1977).
[CrossRef]

K. J. Siemsen, B. G. Whitford, Opt. Commun. 22, 11 (1977).
[CrossRef]

J. J. Hillman, T. Kostiuk, D. Buhl, J. L. Faris, J. C. Novaco, M. J. Mumma, Opt. Lett. 1, 81 (1977).
[CrossRef] [PubMed]

1976 (1)

J. Reid, K. Siemsen, Appl. Phys. Lett. 29, 250 (1976); J. Appl. Phys. 48, 2712 (1977).
[CrossRef]

1973 (1)

F. W. Taylor, J. Quant. Spectrosc. Radiat. Transfer 13, 1181 (1973).
[CrossRef]

Berger, W.

W. Berger, K. Siemsen, J. Reid, Rev. Sci. Instrum. 48, 1031 (1977).
[CrossRef]

Buhl, D.

Faris, J. L.

Feldman, B. J.

Fisher, R. A.

Garside, B. K.

J. Reid, J. Shewchun, B. K. Garside, in preparation.

Grinda, M.

C. O. Weiss, M. Grinda, K. Siemsen, IEEE J. Quantum Electron. QE-13, 892 (1977).
[CrossRef]

Hillman, J. J.

Kostiuk, T.

Lachambre, J.-L.

Lavigne, P.

Mumma, M. J.

Nereson, N.

N. Nereson, J. Mol. Spectrosc. 69, 489 (1978).
[CrossRef]

Novaco, J. C.

Otis, G.

Pollock, C. R.

Rao, K. N.

K. N. Rao, Ohio State U.; private communication.

Reid, J.

W. Berger, K. Siemsen, J. Reid, Rev. Sci. Instrum. 48, 1031 (1977).
[CrossRef]

J. Reid, K. Siemsen, Appl. Phys. Lett. 29, 250 (1976); J. Appl. Phys. 48, 2712 (1977).
[CrossRef]

J. Reid, J. Shewchun, B. K. Garside, in preparation.

Shewchun, J.

J. Reid, J. Shewchun, B. K. Garside, in preparation.

Siemsen, K.

W. Berger, K. Siemsen, J. Reid, Rev. Sci. Instrum. 48, 1031 (1977).
[CrossRef]

C. O. Weiss, M. Grinda, K. Siemsen, IEEE J. Quantum Electron. QE-13, 892 (1977).
[CrossRef]

J. Reid, K. Siemsen, Appl. Phys. Lett. 29, 250 (1976); J. Appl. Phys. 48, 2712 (1977).
[CrossRef]

Siemsen, K. J.

K. J. Siemsen, B. G. Whitford, Opt. Commun. 22, 11 (1977).
[CrossRef]

Simons, S. W.

Taylor, F. W.

F. W. Taylor, J. Quant. Spectrosc. Radiat. Transfer 13, 1181 (1973).
[CrossRef]

Tercovich, R. G.

Weiss, C. O.

C. O. Weiss, M. Grinda, K. Siemsen, IEEE J. Quantum Electron. QE-13, 892 (1977).
[CrossRef]

Whitford, B. G.

K. J. Siemsen, B. G. Whitford, Opt. Commun. 22, 11 (1977).
[CrossRef]

Appl. Phys. Lett. (1)

J. Reid, K. Siemsen, Appl. Phys. Lett. 29, 250 (1976); J. Appl. Phys. 48, 2712 (1977).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. O. Weiss, M. Grinda, K. Siemsen, IEEE J. Quantum Electron. QE-13, 892 (1977).
[CrossRef]

J. Mol. Spectrosc. (1)

N. Nereson, J. Mol. Spectrosc. 69, 489 (1978).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

F. W. Taylor, J. Quant. Spectrosc. Radiat. Transfer 13, 1181 (1973).
[CrossRef]

Opt. Commun. (1)

K. J. Siemsen, B. G. Whitford, Opt. Commun. 22, 11 (1977).
[CrossRef]

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

W. Berger, K. Siemsen, J. Reid, Rev. Sci. Instrum. 48, 1031 (1977).
[CrossRef]

Other (2)

J. Reid, J. Shewchun, B. K. Garside, in preparation.

K. N. Rao, Ohio State U.; private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Diode laser scan of NH3 absorption and CO2 laser gain in the region of 1043 cm−1. The separation of the P(24) 00°1 CO2 line and the 2sR(4,3) NH3 line was measured as 450 ± 30 MHz. This close coincidence enables an incavity NH3 cell to suppress the P(24) 00°1 line and allows the P(21) 00°2 line to lase. The insert summarizes the results of diode laser scans over the 1040.6–1043.2-cm−1 region.

Fig. 2
Fig. 2

Absorption coefficient of NH3 at line center of three 9.4-μm CO2 laser lines as a function of NH3 pressure. Experimental data points were obtained by measuring the absorption of a CO2 laser beam as it passed through an external cell containing NH3 at pressures from 5 Torr to 300 Torr. The solid lines show the results of a best-fit calculation using the data of Fig. 1 and Ref. 5 (see text). Note the good discrimination between the P(24) regular and P(21) sequence lines, particularly at NH3 pressures below 40 Torr.

Fig. 3
Fig. 3

Repeat of Fig. 2 for the CO2 laser lines near R(14) 00°1 in the 10.4-μm band. The insert gives the relative positions of the CO2 laser lines and the aR(1,1) transition of NH3. The line through the R(14) data is a best-fit using this NH3 transition (see text). All other lines are hand drawn through the experimental data. Note the very strong absorption at the R(14) 00°1 CO2 transition and the much weaker absorption on the sequence lines.

Fig. 4
Fig. 4

Repeat of Fig. 2, for the CO2 laser lines near P(20) 00°1 in the 10.4-μm band. Again, the insert summarizes the relative positions of CO2 and NH3 transitions.7 All lines are simply hand drawn through the experimental points. The NH3 absorption coefficients are relatively weak in this region, and a reasonably long incavity cell is required to ensure suppression of the P(20) 00°1 line.

Metrics