Abstract

Excitation of surface electromagnetic waves (SEW) on water was studied using optical coupling techniques at microwave frequencies. Excitation of SEW was also achieved using direct horn antenna coupling. The transmitted SEW power was increased by adding acid and salt to water. The horn antenna gave the maximum excitation efficiency 70%. It was increased to 75% by collimating the electromagnetic beam in the vertical direction. Excitation efficiency for the prism (0° pitch angle) and grating couplers were 15.2% and 10.5% respectively. By changing the prism coupler pitch angle to +36°, its excitation efficiency was increased to 82%.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. E. M. Barlow, J. Brown, Radio Surface Waves (Oxford U. P., New York, 1962).
  2. D. Beaglehold, Phys. Rev. Lett. 22, 708 (1969).
    [CrossRef]
  3. W. E. Anderson, R. W. Alexander, R. J. Bell, Phys. Rev. Lett. 27, 1057 (1971).
    [CrossRef]
  4. N. Marschall, B. Fisher, H. J. Queisser, Phys. Rev. Lett. 27, 95 (1971).
    [CrossRef]
  5. R. H. Ritchie, Surf. Sci. 34, 1 (1973).
    [CrossRef]
  6. B. Fisher, N. Marschall, H. J. Queisser, Surf. Sci. 34, 50 (1973).
    [CrossRef]
  7. L. F. Teng, R. W. Alexander, R. J. Bell, B. Fisher, Phys. Status Solidi B 68, 513 (1975).
    [CrossRef]
  8. M. Davarpanah, C. A. Goben, R. J. Bell, Wave Electron. 3, 19 (1977).
  9. C. A. Angulo, W. S. C. Chang, IRE Trans. Antennas Propag. AP-7, 359 (1959).
    [CrossRef]
  10. A. F. Harvey, IRE Trans. Microwave Theory Tech. MTT-8, 30 (1960).
    [CrossRef]
  11. P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
    [CrossRef]
  12. P. K. Tien, Appl. Opt. 10, 2395 (1971).
    [CrossRef] [PubMed]
  13. M. Davarpanah, “Excitation of Surface Electromagnetic Waves at Microwave Frequencies Using Optical Techniques,” Ph.D. Dissertation, U. Missouri-Rolla Library, Rolla (1975).
  14. M. Davarpanah, C. A. Goben, D. L. Begley, S. L. Griffith, Appl. Opt. 12, 3066 (1976).
    [CrossRef]
  15. R. Ulrich, J. Opt. Soc. Am. 61, 1467 (1971).
    [CrossRef]
  16. J. D. McMullen, Solid State Commun. 17, 331 (1975).
    [CrossRef]
  17. A. K. Singh, C. A. Goben, M. Davarpanah, J. L. Boone, to be published.

1977 (1)

M. Davarpanah, C. A. Goben, R. J. Bell, Wave Electron. 3, 19 (1977).

1976 (1)

M. Davarpanah, C. A. Goben, D. L. Begley, S. L. Griffith, Appl. Opt. 12, 3066 (1976).
[CrossRef]

1975 (2)

J. D. McMullen, Solid State Commun. 17, 331 (1975).
[CrossRef]

L. F. Teng, R. W. Alexander, R. J. Bell, B. Fisher, Phys. Status Solidi B 68, 513 (1975).
[CrossRef]

1973 (2)

R. H. Ritchie, Surf. Sci. 34, 1 (1973).
[CrossRef]

B. Fisher, N. Marschall, H. J. Queisser, Surf. Sci. 34, 50 (1973).
[CrossRef]

1971 (4)

W. E. Anderson, R. W. Alexander, R. J. Bell, Phys. Rev. Lett. 27, 1057 (1971).
[CrossRef]

N. Marschall, B. Fisher, H. J. Queisser, Phys. Rev. Lett. 27, 95 (1971).
[CrossRef]

R. Ulrich, J. Opt. Soc. Am. 61, 1467 (1971).
[CrossRef]

P. K. Tien, Appl. Opt. 10, 2395 (1971).
[CrossRef] [PubMed]

1969 (2)

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

D. Beaglehold, Phys. Rev. Lett. 22, 708 (1969).
[CrossRef]

1960 (1)

A. F. Harvey, IRE Trans. Microwave Theory Tech. MTT-8, 30 (1960).
[CrossRef]

1959 (1)

C. A. Angulo, W. S. C. Chang, IRE Trans. Antennas Propag. AP-7, 359 (1959).
[CrossRef]

Alexander, R. W.

L. F. Teng, R. W. Alexander, R. J. Bell, B. Fisher, Phys. Status Solidi B 68, 513 (1975).
[CrossRef]

W. E. Anderson, R. W. Alexander, R. J. Bell, Phys. Rev. Lett. 27, 1057 (1971).
[CrossRef]

Anderson, W. E.

W. E. Anderson, R. W. Alexander, R. J. Bell, Phys. Rev. Lett. 27, 1057 (1971).
[CrossRef]

Angulo, C. A.

C. A. Angulo, W. S. C. Chang, IRE Trans. Antennas Propag. AP-7, 359 (1959).
[CrossRef]

Barlow, H. E. M.

H. E. M. Barlow, J. Brown, Radio Surface Waves (Oxford U. P., New York, 1962).

Beaglehold, D.

D. Beaglehold, Phys. Rev. Lett. 22, 708 (1969).
[CrossRef]

Begley, D. L.

M. Davarpanah, C. A. Goben, D. L. Begley, S. L. Griffith, Appl. Opt. 12, 3066 (1976).
[CrossRef]

Bell, R. J.

M. Davarpanah, C. A. Goben, R. J. Bell, Wave Electron. 3, 19 (1977).

L. F. Teng, R. W. Alexander, R. J. Bell, B. Fisher, Phys. Status Solidi B 68, 513 (1975).
[CrossRef]

W. E. Anderson, R. W. Alexander, R. J. Bell, Phys. Rev. Lett. 27, 1057 (1971).
[CrossRef]

Boone, J. L.

A. K. Singh, C. A. Goben, M. Davarpanah, J. L. Boone, to be published.

Brown, J.

H. E. M. Barlow, J. Brown, Radio Surface Waves (Oxford U. P., New York, 1962).

Chang, W. S. C.

C. A. Angulo, W. S. C. Chang, IRE Trans. Antennas Propag. AP-7, 359 (1959).
[CrossRef]

Davarpanah, M.

M. Davarpanah, C. A. Goben, R. J. Bell, Wave Electron. 3, 19 (1977).

M. Davarpanah, C. A. Goben, D. L. Begley, S. L. Griffith, Appl. Opt. 12, 3066 (1976).
[CrossRef]

M. Davarpanah, “Excitation of Surface Electromagnetic Waves at Microwave Frequencies Using Optical Techniques,” Ph.D. Dissertation, U. Missouri-Rolla Library, Rolla (1975).

A. K. Singh, C. A. Goben, M. Davarpanah, J. L. Boone, to be published.

Fisher, B.

L. F. Teng, R. W. Alexander, R. J. Bell, B. Fisher, Phys. Status Solidi B 68, 513 (1975).
[CrossRef]

B. Fisher, N. Marschall, H. J. Queisser, Surf. Sci. 34, 50 (1973).
[CrossRef]

N. Marschall, B. Fisher, H. J. Queisser, Phys. Rev. Lett. 27, 95 (1971).
[CrossRef]

Goben, C. A.

M. Davarpanah, C. A. Goben, R. J. Bell, Wave Electron. 3, 19 (1977).

M. Davarpanah, C. A. Goben, D. L. Begley, S. L. Griffith, Appl. Opt. 12, 3066 (1976).
[CrossRef]

A. K. Singh, C. A. Goben, M. Davarpanah, J. L. Boone, to be published.

Griffith, S. L.

M. Davarpanah, C. A. Goben, D. L. Begley, S. L. Griffith, Appl. Opt. 12, 3066 (1976).
[CrossRef]

Harvey, A. F.

A. F. Harvey, IRE Trans. Microwave Theory Tech. MTT-8, 30 (1960).
[CrossRef]

Marschall, N.

B. Fisher, N. Marschall, H. J. Queisser, Surf. Sci. 34, 50 (1973).
[CrossRef]

N. Marschall, B. Fisher, H. J. Queisser, Phys. Rev. Lett. 27, 95 (1971).
[CrossRef]

Martin, R. J.

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

McMullen, J. D.

J. D. McMullen, Solid State Commun. 17, 331 (1975).
[CrossRef]

Queisser, H. J.

B. Fisher, N. Marschall, H. J. Queisser, Surf. Sci. 34, 50 (1973).
[CrossRef]

N. Marschall, B. Fisher, H. J. Queisser, Phys. Rev. Lett. 27, 95 (1971).
[CrossRef]

Ritchie, R. H.

R. H. Ritchie, Surf. Sci. 34, 1 (1973).
[CrossRef]

Singh, A. K.

A. K. Singh, C. A. Goben, M. Davarpanah, J. L. Boone, to be published.

Teng, L. F.

L. F. Teng, R. W. Alexander, R. J. Bell, B. Fisher, Phys. Status Solidi B 68, 513 (1975).
[CrossRef]

Tien, P. K.

P. K. Tien, Appl. Opt. 10, 2395 (1971).
[CrossRef] [PubMed]

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

Ulrich, R.

R. Ulrich, J. Opt. Soc. Am. 61, 1467 (1971).
[CrossRef]

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

Appl. Opt. (2)

M. Davarpanah, C. A. Goben, D. L. Begley, S. L. Griffith, Appl. Opt. 12, 3066 (1976).
[CrossRef]

P. K. Tien, Appl. Opt. 10, 2395 (1971).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

IRE Trans. Antennas Propag. (1)

C. A. Angulo, W. S. C. Chang, IRE Trans. Antennas Propag. AP-7, 359 (1959).
[CrossRef]

IRE Trans. Microwave Theory Tech. (1)

A. F. Harvey, IRE Trans. Microwave Theory Tech. MTT-8, 30 (1960).
[CrossRef]

J. Opt. Soc. Am. (1)

Phys. Rev. Lett. (3)

D. Beaglehold, Phys. Rev. Lett. 22, 708 (1969).
[CrossRef]

W. E. Anderson, R. W. Alexander, R. J. Bell, Phys. Rev. Lett. 27, 1057 (1971).
[CrossRef]

N. Marschall, B. Fisher, H. J. Queisser, Phys. Rev. Lett. 27, 95 (1971).
[CrossRef]

Phys. Status Solidi B (1)

L. F. Teng, R. W. Alexander, R. J. Bell, B. Fisher, Phys. Status Solidi B 68, 513 (1975).
[CrossRef]

Solid State Commun. (1)

J. D. McMullen, Solid State Commun. 17, 331 (1975).
[CrossRef]

Surf. Sci. (2)

R. H. Ritchie, Surf. Sci. 34, 1 (1973).
[CrossRef]

B. Fisher, N. Marschall, H. J. Queisser, Surf. Sci. 34, 50 (1973).
[CrossRef]

Wave Electron. (1)

M. Davarpanah, C. A. Goben, R. J. Bell, Wave Electron. 3, 19 (1977).

Other (3)

A. K. Singh, C. A. Goben, M. Davarpanah, J. L. Boone, to be published.

M. Davarpanah, “Excitation of Surface Electromagnetic Waves at Microwave Frequencies Using Optical Techniques,” Ph.D. Dissertation, U. Missouri-Rolla Library, Rolla (1975).

H. E. M. Barlow, J. Brown, Radio Surface Waves (Oxford U. P., New York, 1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

The general experiment setup used for each experiment. Two shields were used to minimize direct coupling. A termination was used to minimize reflection from the end of the tank.

Fig. 2
Fig. 2

Acid concentration in water vs power transmitted by SEW.

Fig. 3
Fig. 3

Salt concentration in water vs power transmitted by SEW.

Fig. 4
Fig. 4

Conductivity of water–acid solution vs acid concentration in water.

Fig. 5
Fig. 5

Conductivity of water–salt solution vs salt concentration by weight.

Fig. 6
Fig. 6

Experimental arrangement for the measurement of excitation efficiency of the grating coupler.

Fig. 7
Fig. 7

Grating coupler excitation efficiency vs (gap height)/(wavelength). The grating structure consisted of 10 bars of 1.27 cm diam spaced 5.5 cm apart.

Fig. 8
Fig. 8

Transmitted SEW power vs swept frequency for a grating coupler height of 13.3 cm.

Fig. 9
Fig. 9

Transmitted SEW power vs swept frequency for a grating coupler height of 17 cm.

Fig. 10
Fig. 10

The horn antenna is taped at the back of the prism so that the center line of the horn antenna intercepts one wavelength back from the right angled corner of the prism. Most of the electromagnetic wave that comes from the horn antenna then hits the bottom of the prism at the critical angle.

Fig. 11
Fig. 11

Prism coupler excitation efficiency vs (gap height)/(wavelength). Maximum efficiency achieved was 15.2%.

Fig. 12
Fig. 12

Excitation efficiency of the prism coupler vs coupler pitch angle. Maximum efficiency achieved was 82% at a gap height of 4.5 wavelengths.

Fig. 13
Fig. 13

Direct horn antenna coupler excitation efficiency vs (gap height)/(wavelength). A maximum efficiency of 70% was achieved.

Fig. 14
Fig. 14

Direct horn antenna coupler excitation efficiency vs (gap height)/(wavelength) with electromagnetic beam collimated in vertical direction. Maximum excitation efficiency of 75% was achieved, which is 5% higher than that obtained without collimating the beam.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

α = V σ 1 μ 1 2 [ ( 1 0 ) 2 + σ 1 2 ω 2 0 2 ] ,
sin θ m = 1 [ m λ / d ] , m = 0,1,2 , ,
H p = ( 0.2 + 0.55 n ) λ , n = 0,1,2 , ,
k s = n p ( ω / c ) sin α ,
n p = 1 / ( sin α )
ρ = ( 1 / 0 j σ 1 / ω 0 ) cos ψ [ ( 1 / 0 j σ 1 / ω 0 ) sin 2 ψ ] 1 / 2 ( 1 / 0 j σ 1 / ω 0 ) cos ψ + [ ( 1 / 0 j σ 1 / ω 1 ) sin 2 ψ ] 1 / 2 .
tan ψ = [ ( 1 0 j σ 1 ω 0 ) ] 1 / 2 .

Metrics