Abstract

Fundamental problems of incoherent optical heterodyne detection are analyzed. Output of the heterodyne detection depends on the spatial and temporal coherences of incoming incoherent signal light on the photodetector surface. The directivity of optical heterodyne detection is concluded to be the same as with that of direct detection in an ideal case in which the image of the object is well focused on the photodetector surface. This incoherent heterodyne detection is applied to air pollution monitoring. In the laboratory, the absorption spectra due to NH3, Freon, and SF6 are measured using an incoherent light source, and the concentrations of each gas were determined by using the least-squares method.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. T. Menzies, Opto-electronics 4, 179 (1972).
    [CrossRef]
  2. R. T. Menzies, Appl. Phys. Lett. 22, 592 (1973).
    [CrossRef]
  3. R. T. Menzies, M. S. Shumate, Conference on Laser Engineering and Applications (CLEA) (OSA/IEEE, Washington, D.C., 1975).
  4. J. H. McElroy, Appl. Opt. 11, 1619 (1972).
    [CrossRef] [PubMed]
  5. B. J. Peyton, A. J. DiNardo, S. C. Cohen, J. H. McElroy, R. J. Costes, IEEE J. Quantum Electron. QE-11, 569 (1975).
    [CrossRef]
  6. J. Gay, A. Journet, B. Christophe, M. Robert, Appl. Phys. Lett. 22, 448 (1973).
    [CrossRef]
  7. B. Christophe, D. Camus, Conference on Laser Engineering and Applications (CLEA) (OSA/IEEE, Washington, D.C., 1975).
  8. S. R. King, D. T. Hodges, T. S. Hartwick, D. H. Barker, Appl. Opt. 12, 1106 (1973).
    [CrossRef] [PubMed]
  9. H. J. Raterink, H. v. d. Stadt, H. J. Frankena, “Remote Heterodyne Detection Techniques to Measure Air Pollutants,” International Council of Quantum Electronics, 1976.
  10. M. C. Teich, Proc. IEEE 56, 37 (1968).
    [CrossRef]
  11. A. E. Siegman, Proc. IEEE 54, 1350 (1966).
    [CrossRef]
  12. H. T. Yura, Appl. Opt. 13, 150 (1974).
    [CrossRef] [PubMed]
  13. Y. Fujii, H. Takimoto, “Imaging Properties due to the Optical Heterodyne and its Application to Laser Microscopy,” International Council of Quantum Electronics, 1976.

1975 (1)

B. J. Peyton, A. J. DiNardo, S. C. Cohen, J. H. McElroy, R. J. Costes, IEEE J. Quantum Electron. QE-11, 569 (1975).
[CrossRef]

1974 (1)

1973 (3)

S. R. King, D. T. Hodges, T. S. Hartwick, D. H. Barker, Appl. Opt. 12, 1106 (1973).
[CrossRef] [PubMed]

R. T. Menzies, Appl. Phys. Lett. 22, 592 (1973).
[CrossRef]

J. Gay, A. Journet, B. Christophe, M. Robert, Appl. Phys. Lett. 22, 448 (1973).
[CrossRef]

1972 (2)

R. T. Menzies, Opto-electronics 4, 179 (1972).
[CrossRef]

J. H. McElroy, Appl. Opt. 11, 1619 (1972).
[CrossRef] [PubMed]

1968 (1)

M. C. Teich, Proc. IEEE 56, 37 (1968).
[CrossRef]

1966 (1)

A. E. Siegman, Proc. IEEE 54, 1350 (1966).
[CrossRef]

Barker, D. H.

Camus, D.

B. Christophe, D. Camus, Conference on Laser Engineering and Applications (CLEA) (OSA/IEEE, Washington, D.C., 1975).

Christophe, B.

J. Gay, A. Journet, B. Christophe, M. Robert, Appl. Phys. Lett. 22, 448 (1973).
[CrossRef]

B. Christophe, D. Camus, Conference on Laser Engineering and Applications (CLEA) (OSA/IEEE, Washington, D.C., 1975).

Cohen, S. C.

B. J. Peyton, A. J. DiNardo, S. C. Cohen, J. H. McElroy, R. J. Costes, IEEE J. Quantum Electron. QE-11, 569 (1975).
[CrossRef]

Costes, R. J.

B. J. Peyton, A. J. DiNardo, S. C. Cohen, J. H. McElroy, R. J. Costes, IEEE J. Quantum Electron. QE-11, 569 (1975).
[CrossRef]

DiNardo, A. J.

B. J. Peyton, A. J. DiNardo, S. C. Cohen, J. H. McElroy, R. J. Costes, IEEE J. Quantum Electron. QE-11, 569 (1975).
[CrossRef]

Frankena, H. J.

H. J. Raterink, H. v. d. Stadt, H. J. Frankena, “Remote Heterodyne Detection Techniques to Measure Air Pollutants,” International Council of Quantum Electronics, 1976.

Fujii, Y.

Y. Fujii, H. Takimoto, “Imaging Properties due to the Optical Heterodyne and its Application to Laser Microscopy,” International Council of Quantum Electronics, 1976.

Gay, J.

J. Gay, A. Journet, B. Christophe, M. Robert, Appl. Phys. Lett. 22, 448 (1973).
[CrossRef]

Hartwick, T. S.

Hodges, D. T.

Journet, A.

J. Gay, A. Journet, B. Christophe, M. Robert, Appl. Phys. Lett. 22, 448 (1973).
[CrossRef]

King, S. R.

McElroy, J. H.

B. J. Peyton, A. J. DiNardo, S. C. Cohen, J. H. McElroy, R. J. Costes, IEEE J. Quantum Electron. QE-11, 569 (1975).
[CrossRef]

J. H. McElroy, Appl. Opt. 11, 1619 (1972).
[CrossRef] [PubMed]

Menzies, R. T.

R. T. Menzies, Appl. Phys. Lett. 22, 592 (1973).
[CrossRef]

R. T. Menzies, Opto-electronics 4, 179 (1972).
[CrossRef]

R. T. Menzies, M. S. Shumate, Conference on Laser Engineering and Applications (CLEA) (OSA/IEEE, Washington, D.C., 1975).

Peyton, B. J.

B. J. Peyton, A. J. DiNardo, S. C. Cohen, J. H. McElroy, R. J. Costes, IEEE J. Quantum Electron. QE-11, 569 (1975).
[CrossRef]

Raterink, H. J.

H. J. Raterink, H. v. d. Stadt, H. J. Frankena, “Remote Heterodyne Detection Techniques to Measure Air Pollutants,” International Council of Quantum Electronics, 1976.

Robert, M.

J. Gay, A. Journet, B. Christophe, M. Robert, Appl. Phys. Lett. 22, 448 (1973).
[CrossRef]

Shumate, M. S.

R. T. Menzies, M. S. Shumate, Conference on Laser Engineering and Applications (CLEA) (OSA/IEEE, Washington, D.C., 1975).

Siegman, A. E.

A. E. Siegman, Proc. IEEE 54, 1350 (1966).
[CrossRef]

Stadt, H. v. d.

H. J. Raterink, H. v. d. Stadt, H. J. Frankena, “Remote Heterodyne Detection Techniques to Measure Air Pollutants,” International Council of Quantum Electronics, 1976.

Takimoto, H.

Y. Fujii, H. Takimoto, “Imaging Properties due to the Optical Heterodyne and its Application to Laser Microscopy,” International Council of Quantum Electronics, 1976.

Teich, M. C.

M. C. Teich, Proc. IEEE 56, 37 (1968).
[CrossRef]

Yura, H. T.

Appl. Opt. (3)

Appl. Phys. Lett. (2)

R. T. Menzies, Appl. Phys. Lett. 22, 592 (1973).
[CrossRef]

J. Gay, A. Journet, B. Christophe, M. Robert, Appl. Phys. Lett. 22, 448 (1973).
[CrossRef]

IEEE J. Quantum Electron. (1)

B. J. Peyton, A. J. DiNardo, S. C. Cohen, J. H. McElroy, R. J. Costes, IEEE J. Quantum Electron. QE-11, 569 (1975).
[CrossRef]

Opto-electronics (1)

R. T. Menzies, Opto-electronics 4, 179 (1972).
[CrossRef]

Proc. IEEE (2)

M. C. Teich, Proc. IEEE 56, 37 (1968).
[CrossRef]

A. E. Siegman, Proc. IEEE 54, 1350 (1966).
[CrossRef]

Other (4)

Y. Fujii, H. Takimoto, “Imaging Properties due to the Optical Heterodyne and its Application to Laser Microscopy,” International Council of Quantum Electronics, 1976.

B. Christophe, D. Camus, Conference on Laser Engineering and Applications (CLEA) (OSA/IEEE, Washington, D.C., 1975).

H. J. Raterink, H. v. d. Stadt, H. J. Frankena, “Remote Heterodyne Detection Techniques to Measure Air Pollutants,” International Council of Quantum Electronics, 1976.

R. T. Menzies, M. S. Shumate, Conference on Laser Engineering and Applications (CLEA) (OSA/IEEE, Washington, D.C., 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Incoherent heterodyne detection output as a function of the lens aperture.

Fig. 2
Fig. 2

Experimental incoherent heterodyne detection radiometer.

Fig. 3
Fig. 3

Photograph of the experimental radiometer by incoherent heterodyne detection.

Fig. 4
Fig. 4

Total noise from the HgCdTe photodetector as a function of the total current including the biasing current and photocurrent.

Fig. 5
Fig. 5

Four phases of the triple chopping system.

Fig. 6
Fig. 6

Spectra of SF6, CCl2F2 (Freon), and NH3 gases.

Fig. 7
Fig. 7

Spectra of the gas mixture.

Fig. 8
Fig. 8

The effect of the interference due to the coexisting gas in the gas mixture. The figure on the left shows the results of the calculation of the concentration of each gas taking into account three gases. The three figures on the right show the results when only two kinds of gases mentioned in the figure are taken into account.

Fig. 9
Fig. 9

The effect of the coexisting gas on the results of the concentration, for example, CCl2F2(Freon), while the concentration of SF6 is kept constant.

Tables (1)

Tables Icon

Table 1 Heterodyne output of the incoherent detection

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

h ( r , t ) = a S ( r , t ) a L ( r ) exp ( i ω t ) .
i ( r , t ) η e ћ ω h ( r , t ) ,
I ( t ) = S D i ( r , t ) d 2 r ,
P = lim T 1 2 T T T R L I 2 ( t ) d t = K lim T 1 2 T T T [ S D h ( r , t ) d 2 r ] 2 d t ,
P = K S D S D lim T 1 2 T T T h ( r 1 , t ) h ( r 2 , t ) d t d 2 r 1 d 2 r 2 = K S D S D C ( r 1 , r 2 ) d 2 r 1 d 2 r 2 ,
C ( r 1 , r 2 ) = lim T 1 2 T T T h ( r 1 , t ) h ( r 2 , t ) d t .
C ( r 1 , r 2 ) = ( P S P L ) / ( S D 2 ) ,
P = K P S P L .
C ( r 1 , r 2 ) = ( P S P L ) / S D 2 ) exp [ i ϕ ( r 1 ) i ϕ ( r 2 ) ] .
P = K ( P S P L ) / ( S D 2 ) S D S D exp [ i ϕ ( r 1 ) ] exp [ i ϕ ( r 2 ) ] d 2 r 1 d 2 r 2 = K ( P S P L ) / ( S D ) | S D exp [ i ϕ ( r ) ] d 2 r | 2 ,
| S D exp [ i ϕ ( r ) ] d 2 r | 2 A c S D · S D 2 .
P = K P S P L ( A c / S D ) .
P = K P S P L ( S D / A p ) .
P = K P S P L ( λ 2 / A p ) .
P = K P S P L ( S D / A p ) · ( λ 2 / S D ) = K P S P L ( λ 2 / A p ) .
r d = 0.61 f λ / a ,
A p π ( r m 2 + r d 2 ) ,
r m = a 3 f 2 n ( 4 n 1 ) 32 ( n 1 ) 2 ( n + 1 ) ,
P I I = T f · P h e t + γ P I ,
P I I I = P h e t + γ P I V ,
γ = ( P I I T f P I I I ) / P I T f P I V ) ,
P h e t = P I I I γ P I V .

Metrics