Abstract

An optical design and analysis program structured for operation on a minicomputer has been developed at NRC (National Research Council of Canada). It has been designed to be used interactively giving the user both flexibility and ease of operation. The computer on which it runs at present is a Digital PDP11 with a memory of around 28K, and this represents a great saving in computer costs when compared with those of a large computer upon which most lens design work is carried out. This program has capabilities for optimizing a lens system, for pupil exploration, for fitting the computed wavefront aberration to a polynomial, and for evaluating the diffraction optical transfer function. Although only ten finite rays are traced in the optimization routine, the aberrations computed, together with the Seidel aberrations obtained from the paraxial ray trace, provide the user with adequate control of the aberrations over both aperture and field. A Double Gauss and a Maksutov-Cassegrain system are used as practical examples to illustrate this.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Volosov, N. V. Zero, Appl. Opt. 8, 2 (1969).
    [CrossRef]
  2. W. B. King, Ph.D. Thesis, U. London (1965).
  3. J. Macdonald, Ph.D. Thesis, U. Reading (1974).
  4. H. H. Hopkins, M. J. Yzuel, Opt. Acta 17, 157 (1970).
    [CrossRef]
  5. K. Levenberg, Q. Appl. Math. 2, 164 (1944).
  6. H. H. Hopkins, The Wave Theory of Aberrations (Oxford U. P., London, 1950).
  7. M. J. Kidger, C. G. Wynne, Appl. Opt. 6, 3 (1967).
    [CrossRef]
  8. C. G. Wynne, P. M. J. H. Wormell, Appl. Opt. 2, 1233 (1963).
    [CrossRef]
  9. G. Smith, Ph.D. Thesis, U. Reading (1972).
  10. J. Macdonald, Opt. Acta 18, 4 (1971).
    [CrossRef]
  11. J. W. Cooley, J. W. Tukey, Math. Comput. 19, 296 (1965).
  12. H. H. Hopkins, Proc. Phys. Soc. London, Sec. B 70, 1002 (1957).
    [CrossRef]

1971 (1)

J. Macdonald, Opt. Acta 18, 4 (1971).
[CrossRef]

1970 (1)

H. H. Hopkins, M. J. Yzuel, Opt. Acta 17, 157 (1970).
[CrossRef]

1969 (1)

D. S. Volosov, N. V. Zero, Appl. Opt. 8, 2 (1969).
[CrossRef]

1967 (1)

M. J. Kidger, C. G. Wynne, Appl. Opt. 6, 3 (1967).
[CrossRef]

1965 (1)

J. W. Cooley, J. W. Tukey, Math. Comput. 19, 296 (1965).

1963 (1)

1957 (1)

H. H. Hopkins, Proc. Phys. Soc. London, Sec. B 70, 1002 (1957).
[CrossRef]

1944 (1)

K. Levenberg, Q. Appl. Math. 2, 164 (1944).

Cooley, J. W.

J. W. Cooley, J. W. Tukey, Math. Comput. 19, 296 (1965).

Hopkins, H. H.

H. H. Hopkins, M. J. Yzuel, Opt. Acta 17, 157 (1970).
[CrossRef]

H. H. Hopkins, Proc. Phys. Soc. London, Sec. B 70, 1002 (1957).
[CrossRef]

H. H. Hopkins, The Wave Theory of Aberrations (Oxford U. P., London, 1950).

Kidger, M. J.

M. J. Kidger, C. G. Wynne, Appl. Opt. 6, 3 (1967).
[CrossRef]

King, W. B.

W. B. King, Ph.D. Thesis, U. London (1965).

Levenberg, K.

K. Levenberg, Q. Appl. Math. 2, 164 (1944).

Macdonald, J.

J. Macdonald, Opt. Acta 18, 4 (1971).
[CrossRef]

J. Macdonald, Ph.D. Thesis, U. Reading (1974).

Smith, G.

G. Smith, Ph.D. Thesis, U. Reading (1972).

Tukey, J. W.

J. W. Cooley, J. W. Tukey, Math. Comput. 19, 296 (1965).

Volosov, D. S.

D. S. Volosov, N. V. Zero, Appl. Opt. 8, 2 (1969).
[CrossRef]

Wormell, P. M. J. H.

Wynne, C. G.

Yzuel, M. J.

H. H. Hopkins, M. J. Yzuel, Opt. Acta 17, 157 (1970).
[CrossRef]

Zero, N. V.

D. S. Volosov, N. V. Zero, Appl. Opt. 8, 2 (1969).
[CrossRef]

Appl. Opt. (3)

D. S. Volosov, N. V. Zero, Appl. Opt. 8, 2 (1969).
[CrossRef]

M. J. Kidger, C. G. Wynne, Appl. Opt. 6, 3 (1967).
[CrossRef]

C. G. Wynne, P. M. J. H. Wormell, Appl. Opt. 2, 1233 (1963).
[CrossRef]

Math. Comput. (1)

J. W. Cooley, J. W. Tukey, Math. Comput. 19, 296 (1965).

Opt. Acta (2)

H. H. Hopkins, M. J. Yzuel, Opt. Acta 17, 157 (1970).
[CrossRef]

J. Macdonald, Opt. Acta 18, 4 (1971).
[CrossRef]

Proc. Phys. Soc. London, Sec. B (1)

H. H. Hopkins, Proc. Phys. Soc. London, Sec. B 70, 1002 (1957).
[CrossRef]

Q. Appl. Math. (1)

K. Levenberg, Q. Appl. Math. 2, 164 (1944).

Other (4)

H. H. Hopkins, The Wave Theory of Aberrations (Oxford U. P., London, 1950).

W. B. King, Ph.D. Thesis, U. London (1965).

J. Macdonald, Ph.D. Thesis, U. Reading (1974).

G. Smith, Ph.D. Thesis, U. Reading (1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Wavefront aberration associated with an axial image point.

Fig. 2
Fig. 2

Double-Gauss system.

Fig. 3
Fig. 3

(a) Aberration curves for system A. (b) Aberration curves for system B.

Fig. 4
Fig. 4

(a) MTF curves for system A. (b) MTF curves for system B.

Fig. 5
Fig. 5

Maksutov-Cassegrain system.

Fig. 6
Fig. 6

Aberration curves for Maksutov-Cassegrain system.

Fig. 7
Fig. 7

Entrance pupil associated with an extra-axial pencil: • actual rim points; - - - best fitting ellipse.

Fig. 8
Fig. 8

Entrance pupil for extreme image point in system A: • actual rim points; - - - best fitting ellipse.

Fig. 9
Fig. 9

(a) Configuration of rays traced through axial entrance pupil. (b) Configuration of rays traced through off-axial entrance pupil.

Fig. 10
Fig. 10

(a) Aberration polynomial for extreme image point in system A. (b) Aberration polynomial for extreme image point in system B.

Tables (3)

Tables Icon

Table III Maksutov-Cassegrain System

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

G = [ ( W ) / ( x ) ] H = [ ( W ) / ( y ) ] ,
x = X / h y = Y / h ,
W ( r ) = 0 W 20 r 2 + W 40 r 4 + W 60 r 6 ,
0 W 20 = 1 2 n h 2 ( 1 R 0 1 R ) ,
0 W 20 = 1 2 n sin 2 α Z ,
H = [ ( W ) / ( y ) ] = 2 0 W 20 y 4 W 40 y 3 6 W 60 y 5 .
W 40 + W 60 = W ( 0,1 ) 0 W 20 , 4 W 40 + 6 W 60 = H ( 0,1 ) 2 0 W 20 .
( x A ) 2 + ( y C B ) 2 = 1 ,
W ( r ) = W 40 r 4 + W 60 r 6 + W 80 r 8 + W 100 r 10 .
W ( r , ϕ ) = W 20 r 2 + W 40 r 4 + W 60 r 6 + W 80 r 8 + W 100 r 10 + W 22 r 2 cos 2 ϕ + W 42 r 4 cos 2 ϕ + W 62 r 6 cos 2 ϕ + W 44 r 4 cos 4 ϕ + W 31 r 3 cos ϕ + W 51 r 5 cos ϕ + W 71 r 7 cos ϕ + W 91 r 9 cos ϕ + W 33 r 3 cos 3 ϕ + W 53 r 5 cos 3 ϕ + W 55 r 5 cos 5 ϕ .

Metrics