Abstract

A laser absorption spectrometer is described which employs a wavelength-tunable Pb1−xSnxSe diode in conjunction with a multipass White cell and which is capable of measuring SO2 concentrations in the low ppb range. We describe in some detail the modulation techniques used in signal detection which enable us to measure absorption coefficients as low as 10−7 m−1. In addition, calibration of the instrumentation using small sample cells is described, and the question of interference from unwanted molecular species is discussed. The instrumentation allows the measurement, basically at the same time, of a large number of other atmospheric gases which are of significance in pollution studies. For example, the present diode operates oyer 1050–1150 cm−1 and can measure SO2, O3, N2O, CO2, H2O, NH3, and PAN. The addition of a second diode to the system will allow most gases of any atmospheric importance to be monitored. In general, these gases have much stronger ir absorption bands than SO2 and hence can be detected at concentrations much less than 1 ppb.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. L. Hanst, Opt. Quantum Electron. 8, 87 (1976).
    [CrossRef]
  2. R. T. Menzies, Appl. Opt. 10, 1532 (1971).
    [CrossRef] [PubMed]
  3. R. R. Patty, G. M. Russwurm, W. A. McClenny, D. R. Morgan, Appl. Opt. 13, 2850 (1974).
    [CrossRef] [PubMed]
  4. R. T. Menzies, M. T. Chahine, Appl. Opt. 13, 2840 (1974).
    [CrossRef] [PubMed]
  5. R. T. Menzies, M. S. Shumate, Appl. Opt. 15, 2080 (1976).
    [CrossRef] [PubMed]
  6. J. Shewchun, B. K. Garside, E. A. Ballik, C. C. Y. Kwan, M. M. El-Sherbiny, G. Hogenkamp, A. Kazandjian, Appl. Opt. 15, 340 (1976).
    [CrossRef] [PubMed]
  7. B. K. Garside, E. A. Ballik, M. El-Sherbiny, J. Shewchun, Appl. Opt. 16, 398 (1977).
    [CrossRef] [PubMed]
  8. E. D. Hinkley, Opt. Quantum Electron. 8, 155 (1976);R. T. Ku, E. D. Hinkley, J. O. Sample, Appl. Opt. 14, 854 (1975).
    [CrossRef] [PubMed]
  9. E. D. Hinkley, Laser Monitoring of the Atmosphere (Springer-Verlag, New York, 1976), Chap. 6.
    [CrossRef]
  10. J. C. Hill, G. P. Montgomery, Appl. Opt. 15, 748 (1976).
    [CrossRef]
  11. L. B. Kreuzer, N. D. Kenyon, C. K. N. Patel, Science 177, 347 (1972).
    [CrossRef] [PubMed]
  12. T. F. Deaton, D. A. Depatie, T. W. Walker, Appl. Phys. Lett. 26, 300 (1975).
    [CrossRef]
  13. M. S. Shumate, R. T. Menzies, J. S. Margolis, L.-G. Rosengren, Appl. Opt. 15, 2480 (1976).
    [CrossRef] [PubMed]
  14. J. C. Peterson, R. J. Nordstrom, R. K. Long, Appl. Opt. 15, 2974 (1976).
    [CrossRef] [PubMed]
  15. G. P. Montgomery, J. C. Hill, J. Opt. Soc. Am. 65, 579 (1975).
    [CrossRef]
  16. J. S. Knoll, G. L. Tettemer, W. G. Planet, K. Narahari Rao, Da-Wun Chen, L. A. Pugh, Appl. Opt. 15, 2973 (1976).
    [CrossRef] [PubMed]
  17. R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL Atmospheric Absorption Line Parameters Compilation,” AFCRL-Report TR-73-0096, January1973, unpublished.
  18. C. Amiot, G. Guelachvili, J. Mol. Spectrosc. 59, 171 (1976).
    [CrossRef]
  19. E. D. Hinkley, A. R. Calawa, P. L. Kelley, S. A. Clough, J. Appl. Phys. 43, 3222 (1972).
    [CrossRef]
  20. H. Tannenbaum, R. L. Byer, S. F. Clifford, K. S. Fu, E. D. Hinkley, T. Jaeger, A. G. Kjelaas, K. W. Nill, M. Slatkine, A. Wood, Opt. Quantum Electron. 8, 194 (1976).
    [CrossRef]
  21. A. E. O'Keeffe, G. C. Ortman, Anal. chem. 38, 760 (1966).
    [CrossRef]
  22. J. E. Lowder, K. G. P. Sulzmann, S. S. Penner, J. Quant. Spectrosc. Radiat. Transfer 11, 1877 (1971).
    [CrossRef]

1977 (1)

1976 (10)

1975 (2)

G. P. Montgomery, J. C. Hill, J. Opt. Soc. Am. 65, 579 (1975).
[CrossRef]

T. F. Deaton, D. A. Depatie, T. W. Walker, Appl. Phys. Lett. 26, 300 (1975).
[CrossRef]

1974 (2)

1972 (2)

L. B. Kreuzer, N. D. Kenyon, C. K. N. Patel, Science 177, 347 (1972).
[CrossRef] [PubMed]

E. D. Hinkley, A. R. Calawa, P. L. Kelley, S. A. Clough, J. Appl. Phys. 43, 3222 (1972).
[CrossRef]

1971 (2)

R. T. Menzies, Appl. Opt. 10, 1532 (1971).
[CrossRef] [PubMed]

J. E. Lowder, K. G. P. Sulzmann, S. S. Penner, J. Quant. Spectrosc. Radiat. Transfer 11, 1877 (1971).
[CrossRef]

1966 (1)

A. E. O'Keeffe, G. C. Ortman, Anal. chem. 38, 760 (1966).
[CrossRef]

Amiot, C.

C. Amiot, G. Guelachvili, J. Mol. Spectrosc. 59, 171 (1976).
[CrossRef]

Ballik, E. A.

Benedict, W. S.

R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL Atmospheric Absorption Line Parameters Compilation,” AFCRL-Report TR-73-0096, January1973, unpublished.

Burch, D. E.

R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL Atmospheric Absorption Line Parameters Compilation,” AFCRL-Report TR-73-0096, January1973, unpublished.

Byer, R. L.

H. Tannenbaum, R. L. Byer, S. F. Clifford, K. S. Fu, E. D. Hinkley, T. Jaeger, A. G. Kjelaas, K. W. Nill, M. Slatkine, A. Wood, Opt. Quantum Electron. 8, 194 (1976).
[CrossRef]

Calawa, A. R.

E. D. Hinkley, A. R. Calawa, P. L. Kelley, S. A. Clough, J. Appl. Phys. 43, 3222 (1972).
[CrossRef]

Calfee, R. F.

R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL Atmospheric Absorption Line Parameters Compilation,” AFCRL-Report TR-73-0096, January1973, unpublished.

Chahine, M. T.

Chen, Da-Wun

Clifford, S. F.

H. Tannenbaum, R. L. Byer, S. F. Clifford, K. S. Fu, E. D. Hinkley, T. Jaeger, A. G. Kjelaas, K. W. Nill, M. Slatkine, A. Wood, Opt. Quantum Electron. 8, 194 (1976).
[CrossRef]

Clough, S. A.

E. D. Hinkley, A. R. Calawa, P. L. Kelley, S. A. Clough, J. Appl. Phys. 43, 3222 (1972).
[CrossRef]

R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL Atmospheric Absorption Line Parameters Compilation,” AFCRL-Report TR-73-0096, January1973, unpublished.

Deaton, T. F.

T. F. Deaton, D. A. Depatie, T. W. Walker, Appl. Phys. Lett. 26, 300 (1975).
[CrossRef]

Depatie, D. A.

T. F. Deaton, D. A. Depatie, T. W. Walker, Appl. Phys. Lett. 26, 300 (1975).
[CrossRef]

El-Sherbiny, M.

El-Sherbiny, M. M.

Fox, K.

R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL Atmospheric Absorption Line Parameters Compilation,” AFCRL-Report TR-73-0096, January1973, unpublished.

Fu, K. S.

H. Tannenbaum, R. L. Byer, S. F. Clifford, K. S. Fu, E. D. Hinkley, T. Jaeger, A. G. Kjelaas, K. W. Nill, M. Slatkine, A. Wood, Opt. Quantum Electron. 8, 194 (1976).
[CrossRef]

Garing, J. S.

R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL Atmospheric Absorption Line Parameters Compilation,” AFCRL-Report TR-73-0096, January1973, unpublished.

Garside, B. K.

Guelachvili, G.

C. Amiot, G. Guelachvili, J. Mol. Spectrosc. 59, 171 (1976).
[CrossRef]

Hanst, P. L.

P. L. Hanst, Opt. Quantum Electron. 8, 87 (1976).
[CrossRef]

Hill, J. C.

Hinkley, E. D.

H. Tannenbaum, R. L. Byer, S. F. Clifford, K. S. Fu, E. D. Hinkley, T. Jaeger, A. G. Kjelaas, K. W. Nill, M. Slatkine, A. Wood, Opt. Quantum Electron. 8, 194 (1976).
[CrossRef]

E. D. Hinkley, Opt. Quantum Electron. 8, 155 (1976);R. T. Ku, E. D. Hinkley, J. O. Sample, Appl. Opt. 14, 854 (1975).
[CrossRef] [PubMed]

E. D. Hinkley, A. R. Calawa, P. L. Kelley, S. A. Clough, J. Appl. Phys. 43, 3222 (1972).
[CrossRef]

E. D. Hinkley, Laser Monitoring of the Atmosphere (Springer-Verlag, New York, 1976), Chap. 6.
[CrossRef]

Hogenkamp, G.

Jaeger, T.

H. Tannenbaum, R. L. Byer, S. F. Clifford, K. S. Fu, E. D. Hinkley, T. Jaeger, A. G. Kjelaas, K. W. Nill, M. Slatkine, A. Wood, Opt. Quantum Electron. 8, 194 (1976).
[CrossRef]

Kazandjian, A.

Kelley, P. L.

E. D. Hinkley, A. R. Calawa, P. L. Kelley, S. A. Clough, J. Appl. Phys. 43, 3222 (1972).
[CrossRef]

Kenyon, N. D.

L. B. Kreuzer, N. D. Kenyon, C. K. N. Patel, Science 177, 347 (1972).
[CrossRef] [PubMed]

Kjelaas, A. G.

H. Tannenbaum, R. L. Byer, S. F. Clifford, K. S. Fu, E. D. Hinkley, T. Jaeger, A. G. Kjelaas, K. W. Nill, M. Slatkine, A. Wood, Opt. Quantum Electron. 8, 194 (1976).
[CrossRef]

Knoll, J. S.

Kreuzer, L. B.

L. B. Kreuzer, N. D. Kenyon, C. K. N. Patel, Science 177, 347 (1972).
[CrossRef] [PubMed]

Kwan, C. C. Y.

Long, R. K.

Lowder, J. E.

J. E. Lowder, K. G. P. Sulzmann, S. S. Penner, J. Quant. Spectrosc. Radiat. Transfer 11, 1877 (1971).
[CrossRef]

Margolis, J. S.

McClatchey, R. A.

R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL Atmospheric Absorption Line Parameters Compilation,” AFCRL-Report TR-73-0096, January1973, unpublished.

McClenny, W. A.

Menzies, R. T.

Montgomery, G. P.

Morgan, D. R.

Narahari Rao, K.

Nill, K. W.

H. Tannenbaum, R. L. Byer, S. F. Clifford, K. S. Fu, E. D. Hinkley, T. Jaeger, A. G. Kjelaas, K. W. Nill, M. Slatkine, A. Wood, Opt. Quantum Electron. 8, 194 (1976).
[CrossRef]

Nordstrom, R. J.

O'Keeffe, A. E.

A. E. O'Keeffe, G. C. Ortman, Anal. chem. 38, 760 (1966).
[CrossRef]

Ortman, G. C.

A. E. O'Keeffe, G. C. Ortman, Anal. chem. 38, 760 (1966).
[CrossRef]

Patel, C. K. N.

L. B. Kreuzer, N. D. Kenyon, C. K. N. Patel, Science 177, 347 (1972).
[CrossRef] [PubMed]

Patty, R. R.

Penner, S. S.

J. E. Lowder, K. G. P. Sulzmann, S. S. Penner, J. Quant. Spectrosc. Radiat. Transfer 11, 1877 (1971).
[CrossRef]

Peterson, J. C.

Planet, W. G.

Pugh, L. A.

Rosengren, L.-G.

Rothman, L. S.

R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL Atmospheric Absorption Line Parameters Compilation,” AFCRL-Report TR-73-0096, January1973, unpublished.

Russwurm, G. M.

Shewchun, J.

Shumate, M. S.

Slatkine, M.

H. Tannenbaum, R. L. Byer, S. F. Clifford, K. S. Fu, E. D. Hinkley, T. Jaeger, A. G. Kjelaas, K. W. Nill, M. Slatkine, A. Wood, Opt. Quantum Electron. 8, 194 (1976).
[CrossRef]

Sulzmann, K. G. P.

J. E. Lowder, K. G. P. Sulzmann, S. S. Penner, J. Quant. Spectrosc. Radiat. Transfer 11, 1877 (1971).
[CrossRef]

Tannenbaum, H.

H. Tannenbaum, R. L. Byer, S. F. Clifford, K. S. Fu, E. D. Hinkley, T. Jaeger, A. G. Kjelaas, K. W. Nill, M. Slatkine, A. Wood, Opt. Quantum Electron. 8, 194 (1976).
[CrossRef]

Tettemer, G. L.

Walker, T. W.

T. F. Deaton, D. A. Depatie, T. W. Walker, Appl. Phys. Lett. 26, 300 (1975).
[CrossRef]

Wood, A.

H. Tannenbaum, R. L. Byer, S. F. Clifford, K. S. Fu, E. D. Hinkley, T. Jaeger, A. G. Kjelaas, K. W. Nill, M. Slatkine, A. Wood, Opt. Quantum Electron. 8, 194 (1976).
[CrossRef]

Anal. chem. (1)

A. E. O'Keeffe, G. C. Ortman, Anal. chem. 38, 760 (1966).
[CrossRef]

Appl. Opt. (10)

Appl. Phys. Lett. (1)

T. F. Deaton, D. A. Depatie, T. W. Walker, Appl. Phys. Lett. 26, 300 (1975).
[CrossRef]

J. Appl. Phys. (1)

E. D. Hinkley, A. R. Calawa, P. L. Kelley, S. A. Clough, J. Appl. Phys. 43, 3222 (1972).
[CrossRef]

J. Mol. Spectrosc. (1)

C. Amiot, G. Guelachvili, J. Mol. Spectrosc. 59, 171 (1976).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

J. E. Lowder, K. G. P. Sulzmann, S. S. Penner, J. Quant. Spectrosc. Radiat. Transfer 11, 1877 (1971).
[CrossRef]

Opt. Quantum Electron. (3)

H. Tannenbaum, R. L. Byer, S. F. Clifford, K. S. Fu, E. D. Hinkley, T. Jaeger, A. G. Kjelaas, K. W. Nill, M. Slatkine, A. Wood, Opt. Quantum Electron. 8, 194 (1976).
[CrossRef]

P. L. Hanst, Opt. Quantum Electron. 8, 87 (1976).
[CrossRef]

E. D. Hinkley, Opt. Quantum Electron. 8, 155 (1976);R. T. Ku, E. D. Hinkley, J. O. Sample, Appl. Opt. 14, 854 (1975).
[CrossRef] [PubMed]

Science (1)

L. B. Kreuzer, N. D. Kenyon, C. K. N. Patel, Science 177, 347 (1972).
[CrossRef] [PubMed]

Other (2)

R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL Atmospheric Absorption Line Parameters Compilation,” AFCRL-Report TR-73-0096, January1973, unpublished.

E. D. Hinkley, Laser Monitoring of the Atmosphere (Springer-Verlag, New York, 1976), Chap. 6.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the measurement system.

Fig. 2
Fig. 2

Experimental and theoretical transmission spectra for SO2 in the 1142-cm−1 region. A pathlength of 60 m is used, with a 1000-ppm mixture of SO2 in N2 at a total pressure of 10 Torr. Many weak SO2 absorption lines which are obtained experimentally are not predicted by the theoretical compilation of Clough19; a few of these are indicated by an asterisk.

Fig. 3
Fig. 3

Three different SO2 detection schemes. Upper trace: direct absorption detection; middle trace: first harmonic detection; lower trace: second harmonic detection. A 1-kHz diode modulation is used for the harmonic detection. Conditions aro 1000-ppm SO2 in N2, 10-Torr total pressure, 40-m path.

Fig. 4
Fig. 4

Comparison of the three detection schemes at low SO2 concentrations. The three traces are taken under identical experimental conditions. Note the dramatic noise reduction with second harmonic detection.

Fig. 5
Fig. 5

Lock-in amplifier output using the second harmonic detection scheme. In the absence of modulation, sensitivity is limited by detector noise. When a 1-kHz modulation is applied to the diode current, the interference fringes in the bottom trace appear. These fringes result from an etalon formed by two antireflection coated lenses in the beam path. The etalon spacing is 38 cm, with an effective reflectivity of ∼10−3.

Fig. 6
Fig. 6

Detection of SO2 absorption lines in a calibration mixture equivalent to 170-ppb SO2 in N2. This is obtained by using a 300-m pathlength in the evacuated White cell and placing an additional 5-cm cell containing 1000-ppm SO2 at 10 Torr in the beam path. The expanded trace of the weak line at 491 mA indicates that residual fringes limit the sensitivity to ∼3 ppb (SNR = 1).

Fig. 7
Fig. 7

Detection of SO2 in Hamilton air A 300-m path-length is used in the 5-m. White cell, and the air is at 10-Torr total pressure. The SO2 concentration is 40 ppb. Note the additional absorption lines compared with Fig. 6. Three of these lines result from molecules in the air sample, while the fourth line is caused by a contaminant in the White cell.

Tables (1)

Tables Icon

Table I Minimum Detectable Concentration for Many Molecules of Atmospheric Importance; the Results are Quoted for the Sensitivity Achieved with the Present System, i.e., 10−7 m−1

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α = kCl ,

Metrics