Abstract

A Thomson scattering apparatus for measuring the electron temperature and density along a 90-cm diam of the PLT plasma has been built. A wide angle objective images the 3-mm × 900-mm ruby laser beam onto an image dissector which rearranges the 300:1 image to 20:1 forming the input slit of a spectrometer. The stigmatic spectrometer provides twenty wavelength elements of ∼70 Å each. A microchannel-plate image intensifier optically coupled to a cooled SIT tube provides detection with single frame linearity and 1000:1 dynamic range. Spatial profiles of Ne and Te in the 1013–1014-cm−3 range and 0.05–3 keV have an accuracy of 30 [1013/Ne (cm−3)]1/2% per 1.2-cm element.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. DeSilva, G. C. Goldenbaum, in Methods of Experimental Physics, H. R. Griem, R. H. Lovberg, Eds. (Academic, New York, 1970), Vol. 9A, p. 213.
  2. D. L. Dimock, H. P. Eubank, E. Hinnov, L. C. Johnson, E. B. Meservey, Nucl. Fusion 13, 271 (1973).
    [Crossref]
  3. T. B. McCord, J. A. Westphal, Appl. Opt. 11, 522 (1972).
    [Crossref] [PubMed]
  4. S. A. Colgate, E. P. Moore, J. Colburn, Appl. Opt. 14, 1429 (1975).
    [Crossref] [PubMed]
  5. D. M. Hunten, C. J. Stump, Appl. Opt. 15, 3105 (1976).
    [Crossref] [PubMed]
  6. F. P. Burns, IEEE Spectrum 4, 115 (1967).
    [Crossref]
  7. Private Communications with W. J. Rundle of Korad with respect to a low divergence laser system built for the Lunar Ranging Experiment.
  8. I. M. Winer, Appl. Opt. 5, 1437 (1966).
    [Crossref] [PubMed]
  9. Designed by A. McGill, J. Hoagland and of Fairchild Camera.
  10. J. F. James, R. S. Sternberg, The Design of Optical Spectrometers (Chapman and Hall, London, 1969), p. 51.
  11. G. Bekefi, Radiation Process in Plasmas (Wiley, New York1966).
  12. B. Singer, IEEE Trans. Electron Devices ED-18, 1015 (1971).
  13. R. L. Beurle, Proc. IEEE 110, 1350 (1963).
  14. A. J. Lieber, Rev. Sci. Instrum. 43, 104 (1972).
    [Crossref]
  15. R. E. Pechacek, A. W. Trivelpiece, Phys. Fluids 101688 (1967).
    [Crossref]
  16. J. Sheffield, Plasma Phys. 14, 783 (1972).
    [Crossref]

1976 (1)

1975 (1)

1973 (1)

D. L. Dimock, H. P. Eubank, E. Hinnov, L. C. Johnson, E. B. Meservey, Nucl. Fusion 13, 271 (1973).
[Crossref]

1972 (3)

T. B. McCord, J. A. Westphal, Appl. Opt. 11, 522 (1972).
[Crossref] [PubMed]

A. J. Lieber, Rev. Sci. Instrum. 43, 104 (1972).
[Crossref]

J. Sheffield, Plasma Phys. 14, 783 (1972).
[Crossref]

1971 (1)

B. Singer, IEEE Trans. Electron Devices ED-18, 1015 (1971).

1967 (2)

R. E. Pechacek, A. W. Trivelpiece, Phys. Fluids 101688 (1967).
[Crossref]

F. P. Burns, IEEE Spectrum 4, 115 (1967).
[Crossref]

1966 (1)

1963 (1)

R. L. Beurle, Proc. IEEE 110, 1350 (1963).

Bekefi, G.

G. Bekefi, Radiation Process in Plasmas (Wiley, New York1966).

Beurle, R. L.

R. L. Beurle, Proc. IEEE 110, 1350 (1963).

Burns, F. P.

F. P. Burns, IEEE Spectrum 4, 115 (1967).
[Crossref]

Colburn, J.

Colgate, S. A.

DeSilva, A. W.

A. W. DeSilva, G. C. Goldenbaum, in Methods of Experimental Physics, H. R. Griem, R. H. Lovberg, Eds. (Academic, New York, 1970), Vol. 9A, p. 213.

Dimock, D. L.

D. L. Dimock, H. P. Eubank, E. Hinnov, L. C. Johnson, E. B. Meservey, Nucl. Fusion 13, 271 (1973).
[Crossref]

Eubank, H. P.

D. L. Dimock, H. P. Eubank, E. Hinnov, L. C. Johnson, E. B. Meservey, Nucl. Fusion 13, 271 (1973).
[Crossref]

Goldenbaum, G. C.

A. W. DeSilva, G. C. Goldenbaum, in Methods of Experimental Physics, H. R. Griem, R. H. Lovberg, Eds. (Academic, New York, 1970), Vol. 9A, p. 213.

Hinnov, E.

D. L. Dimock, H. P. Eubank, E. Hinnov, L. C. Johnson, E. B. Meservey, Nucl. Fusion 13, 271 (1973).
[Crossref]

Hoagland, J.

Designed by A. McGill, J. Hoagland and of Fairchild Camera.

Hunten, D. M.

James, J. F.

J. F. James, R. S. Sternberg, The Design of Optical Spectrometers (Chapman and Hall, London, 1969), p. 51.

Johnson, L. C.

D. L. Dimock, H. P. Eubank, E. Hinnov, L. C. Johnson, E. B. Meservey, Nucl. Fusion 13, 271 (1973).
[Crossref]

Lieber, A. J.

A. J. Lieber, Rev. Sci. Instrum. 43, 104 (1972).
[Crossref]

McCord, T. B.

McGill, A.

Designed by A. McGill, J. Hoagland and of Fairchild Camera.

Meservey, E. B.

D. L. Dimock, H. P. Eubank, E. Hinnov, L. C. Johnson, E. B. Meservey, Nucl. Fusion 13, 271 (1973).
[Crossref]

Moore, E. P.

Pechacek, R. E.

R. E. Pechacek, A. W. Trivelpiece, Phys. Fluids 101688 (1967).
[Crossref]

Rundle, W. J.

Private Communications with W. J. Rundle of Korad with respect to a low divergence laser system built for the Lunar Ranging Experiment.

Sheffield, J.

J. Sheffield, Plasma Phys. 14, 783 (1972).
[Crossref]

Singer, B.

B. Singer, IEEE Trans. Electron Devices ED-18, 1015 (1971).

Sternberg, R. S.

J. F. James, R. S. Sternberg, The Design of Optical Spectrometers (Chapman and Hall, London, 1969), p. 51.

Stump, C. J.

Trivelpiece, A. W.

R. E. Pechacek, A. W. Trivelpiece, Phys. Fluids 101688 (1967).
[Crossref]

Westphal, J. A.

Winer, I. M.

Appl. Opt. (4)

IEEE Spectrum (1)

F. P. Burns, IEEE Spectrum 4, 115 (1967).
[Crossref]

IEEE Trans. Electron Devices (1)

B. Singer, IEEE Trans. Electron Devices ED-18, 1015 (1971).

Nucl. Fusion (1)

D. L. Dimock, H. P. Eubank, E. Hinnov, L. C. Johnson, E. B. Meservey, Nucl. Fusion 13, 271 (1973).
[Crossref]

Phys. Fluids (1)

R. E. Pechacek, A. W. Trivelpiece, Phys. Fluids 101688 (1967).
[Crossref]

Plasma Phys. (1)

J. Sheffield, Plasma Phys. 14, 783 (1972).
[Crossref]

Proc. IEEE (1)

R. L. Beurle, Proc. IEEE 110, 1350 (1963).

Rev. Sci. Instrum. (1)

A. J. Lieber, Rev. Sci. Instrum. 43, 104 (1972).
[Crossref]

Other (5)

A. W. DeSilva, G. C. Goldenbaum, in Methods of Experimental Physics, H. R. Griem, R. H. Lovberg, Eds. (Academic, New York, 1970), Vol. 9A, p. 213.

Private Communications with W. J. Rundle of Korad with respect to a low divergence laser system built for the Lunar Ranging Experiment.

Designed by A. McGill, J. Hoagland and of Fairchild Camera.

J. F. James, R. S. Sternberg, The Design of Optical Spectrometers (Chapman and Hall, London, 1969), p. 51.

G. Bekefi, Radiation Process in Plasmas (Wiley, New York1966).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

The physical layout of the laser, plasma, and spectrometer is shown.

Fig. 2
Fig. 2

The low divergence laser consists of an aperture constrained oscillator and Pockels cell followed by two amplifiers.

Fig. 3
Fig. 3

A wide angle photograph shows the razor blade stack viewing dump. Several of the beam entrance and exit apertures can be seen.

Fig. 4
Fig. 4

A top and side view show the components of the light collection optics, spectrometer, and TV camera.

Fig. 5
Fig. 5

The objective image surface of the fiber optic image dissector and mount.

Fig. 6
Fig. 6

The geometry of the spectrometer input slit and output field is shown. The scattered light appears on the central part of the field while the plasma background light is split-half above and half below.

Fig. 7
Fig. 7

The response of the MCP-SIT camera is shown to be linear over about 3 decades. The signal is integrated over 1 pixel (∼0.1 mm2 referred to the SIT target). The SNR scales as shot noise over the 1 ≤ S/N ≤ 20 range.

Fig. 8
Fig. 8

The TV camera consists of an f/1 lens and a 40-mm diam MCP image intensifier fiber optically coupled to an SIT camera tube. The device is magnetically shielded and cooled to −35° by circulating acetone through a flange in contact with the target.

Fig. 9
Fig. 9

A block diagram shows the organization of the TV camera electronics.

Fig. 10
Fig. 10

The ratio of Rayleigh scattered intensity to the white screen intensity (with geometrical factors taken out) is shown vs radius.

Fig. 11
Fig. 11

A computer display of a line of raw data shows three data types at a single spatial position: ▽—rest (middle graph); ◊—laser stray light; △—scattered light. The lower graph is the sensitivity for this line.

Fig. 12
Fig. 12

A relativistically corrected Gaussian curve is fitted to the blue wing of the scattered profile for a single position.

Fig. 13
Fig. 13

Electron temperature and density profiles for a vertical chord through the plasma cross section are shown for a relatively high density He discharge. Various parameters of the discharge and calculations generated from the profiles are displayed on the left (see Ref. 2).

Tables (1)

Tables Icon

Table I Target Erasure Consisting of Sixty-four Frames a

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

N p . e . N i ( η T ) n e r 0 2 L Δ Ω { 1 λ i δ π 1 / 2 exp [ ( λ s λ i ) 2 λ i 2 δ 2 ] Δ λ } ,
0 λ i N p . e . d λ s 200 photoelectrons
N s ( λ s , θ s ) / Δ λ = N i N e ( θ s ; r o 2 L ( θ s ) Δ Ω ( θ s ) F ( λ s , θ s ) protons / Å ,
F ( λ s , θ s ) d λ s = 1 .
N ω ( λ s , Θ s ) / Δ λ = I ( λ s ) A ( Θ s ) Δ Ω ( θ s ) sin θ s T photons / Å ,
S s / S ω = N s / N ω
N e ( Θ s ) F ( λ s , Θ s ) = S s ( λ s , Θ s ) R ( λ s , Θ s ) ,
R ( λ s , Θ s ) = S ω N i r o 2 I ( λ s ) W ( Θ s ) T sin Θ s .
W ( Θ s ) = W ( π / 2 ) M 0 ( 1 + M 0 sin Θ s 1 ) ,
F ( λ ) = ( 1 5 / 2 λ ) π 1 / 2 λ i δ exp [ λ 2 δ 2 ( 1 + λ ) ] ,
χ 2 = j = 1 20 [ I j A ( 1 5 / 2 λ j ) exp ( S λ j 2 1 + λ j ) ] 2 / σ j 2 ,
σ S 2 = ( S I j ) 2 σ j 2 , σ A 2 = ( A I j ) 2 σ j 2 , σ A 2 , S = ( A I j ) ( S I j ) σ j 2 ,
( χ 2 ) / ( A ) = 0 , ( χ 2 ) / ( S ) = 0 .
σ T e 2 = σ s 2 ( T e / S ) 2 , σ k N e 2 = ( k N e ) 2 [ σ s 2 ( 1 / 2 S ) 2 + σ A 2 ( ( 1 / A ) σ A , s 2 ( 1 / A S ) ] , σ T e , kN e 2 = N e T e [ σ s 2 ( 1 / 2 S 2 ) σ A , S 2 ( 1 / A S ) ] .
Δ N e N e ½ Δ T e T e 0.3 [ 10 13 / N e ( cm 3 ) ] 1 / 2 .

Metrics