Abstract

The design and performance of an avalanche transistor switchout are described. The device selects a single pulse from a train of cw or Q-switched mode-locked pulses and introduces less than ±1% amplitude variation in the selected pulse. The prepulse rejection ratio exceeds 107, and a lifetime of greater than 107 shots has been achieved.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Kuizenga, Opt. Commun. 22, 156 (1977).
    [CrossRef]
  2. A. J. DeMaria, H. A. Heynau, A. W. Penny, G. Wisner, J. Appl. Phys. 38, 2693 (1967).
    [CrossRef]
  3. G. Kachen, L. Steinmetz, J. Kysilka, Appl. Phys. Lett. 13, 229 (1968).
    [CrossRef]
  4. M. Michon, H. Guillet, D. LeGoff, S. Raynaud, Rev. Sci. Instrum. 40, 263 (1969).
    [CrossRef]
  5. A. J. Alcock, M. C. Richardson, Opt. Commun. 2, 65 (1970).
    [CrossRef]
  6. J. M. Ley, T. H. Christmas, C. G. Widley, Proc. IEEE 117, 1057 (1970).
  7. R. C. Hyer, H. D. Sutphin, K. R. Winn, Rev. Sci. Instrum. 46, 1333 (1975).
    [CrossRef]
  8. Quantel International, Inc., 928 Benecia Avenue, Sunnyvale, Calif. 94086, and Xonies, Inc., 6849 Hayvenhurst Avenue, Van Nuys, Calif. 91406, manufacture commercial pulse selectors based on krytron drivers.
  9. An entirely different technique for generating the fast electrical pulse has been introduced by D. H. Auston, Appl. Phys. Lett. 26, 101 (1975). His technique uses photoconductivity in silicon to turn on and turn off a high voltage with pulses at 0.53 μm and 1.064 μm. However, this technique is not useful for the type of switchout considered here because it requires an isolated mode-locked pulse to begin with that is synchronized to the output pulse train of the oscillator.
    [CrossRef]
  10. V. J. Corcoran, R. W. McMillan, P. M. Rushworth, Appl. Opt. 14, 643 (1975).
    [CrossRef] [PubMed]
  11. G. Brasseur, J. L. Van Eck, P. Vilain, Appl. Opt. 14, 1758 (1975).
    [CrossRef]
  12. Lasermetrics, 111 Galway Place, Teaneck, N.J. 07666.

1977

D. J. Kuizenga, Opt. Commun. 22, 156 (1977).
[CrossRef]

1975

R. C. Hyer, H. D. Sutphin, K. R. Winn, Rev. Sci. Instrum. 46, 1333 (1975).
[CrossRef]

An entirely different technique for generating the fast electrical pulse has been introduced by D. H. Auston, Appl. Phys. Lett. 26, 101 (1975). His technique uses photoconductivity in silicon to turn on and turn off a high voltage with pulses at 0.53 μm and 1.064 μm. However, this technique is not useful for the type of switchout considered here because it requires an isolated mode-locked pulse to begin with that is synchronized to the output pulse train of the oscillator.
[CrossRef]

V. J. Corcoran, R. W. McMillan, P. M. Rushworth, Appl. Opt. 14, 643 (1975).
[CrossRef] [PubMed]

G. Brasseur, J. L. Van Eck, P. Vilain, Appl. Opt. 14, 1758 (1975).
[CrossRef]

1970

A. J. Alcock, M. C. Richardson, Opt. Commun. 2, 65 (1970).
[CrossRef]

J. M. Ley, T. H. Christmas, C. G. Widley, Proc. IEEE 117, 1057 (1970).

1969

M. Michon, H. Guillet, D. LeGoff, S. Raynaud, Rev. Sci. Instrum. 40, 263 (1969).
[CrossRef]

1968

G. Kachen, L. Steinmetz, J. Kysilka, Appl. Phys. Lett. 13, 229 (1968).
[CrossRef]

1967

A. J. DeMaria, H. A. Heynau, A. W. Penny, G. Wisner, J. Appl. Phys. 38, 2693 (1967).
[CrossRef]

Alcock, A. J.

A. J. Alcock, M. C. Richardson, Opt. Commun. 2, 65 (1970).
[CrossRef]

Auston, D. H.

An entirely different technique for generating the fast electrical pulse has been introduced by D. H. Auston, Appl. Phys. Lett. 26, 101 (1975). His technique uses photoconductivity in silicon to turn on and turn off a high voltage with pulses at 0.53 μm and 1.064 μm. However, this technique is not useful for the type of switchout considered here because it requires an isolated mode-locked pulse to begin with that is synchronized to the output pulse train of the oscillator.
[CrossRef]

Brasseur, G.

Christmas, T. H.

J. M. Ley, T. H. Christmas, C. G. Widley, Proc. IEEE 117, 1057 (1970).

Corcoran, V. J.

DeMaria, A. J.

A. J. DeMaria, H. A. Heynau, A. W. Penny, G. Wisner, J. Appl. Phys. 38, 2693 (1967).
[CrossRef]

Guillet, H.

M. Michon, H. Guillet, D. LeGoff, S. Raynaud, Rev. Sci. Instrum. 40, 263 (1969).
[CrossRef]

Heynau, H. A.

A. J. DeMaria, H. A. Heynau, A. W. Penny, G. Wisner, J. Appl. Phys. 38, 2693 (1967).
[CrossRef]

Hyer, R. C.

R. C. Hyer, H. D. Sutphin, K. R. Winn, Rev. Sci. Instrum. 46, 1333 (1975).
[CrossRef]

Kachen, G.

G. Kachen, L. Steinmetz, J. Kysilka, Appl. Phys. Lett. 13, 229 (1968).
[CrossRef]

Kuizenga, D. J.

D. J. Kuizenga, Opt. Commun. 22, 156 (1977).
[CrossRef]

Kysilka, J.

G. Kachen, L. Steinmetz, J. Kysilka, Appl. Phys. Lett. 13, 229 (1968).
[CrossRef]

LeGoff, D.

M. Michon, H. Guillet, D. LeGoff, S. Raynaud, Rev. Sci. Instrum. 40, 263 (1969).
[CrossRef]

Ley, J. M.

J. M. Ley, T. H. Christmas, C. G. Widley, Proc. IEEE 117, 1057 (1970).

McMillan, R. W.

Michon, M.

M. Michon, H. Guillet, D. LeGoff, S. Raynaud, Rev. Sci. Instrum. 40, 263 (1969).
[CrossRef]

Penny, A. W.

A. J. DeMaria, H. A. Heynau, A. W. Penny, G. Wisner, J. Appl. Phys. 38, 2693 (1967).
[CrossRef]

Raynaud, S.

M. Michon, H. Guillet, D. LeGoff, S. Raynaud, Rev. Sci. Instrum. 40, 263 (1969).
[CrossRef]

Richardson, M. C.

A. J. Alcock, M. C. Richardson, Opt. Commun. 2, 65 (1970).
[CrossRef]

Rushworth, P. M.

Steinmetz, L.

G. Kachen, L. Steinmetz, J. Kysilka, Appl. Phys. Lett. 13, 229 (1968).
[CrossRef]

Sutphin, H. D.

R. C. Hyer, H. D. Sutphin, K. R. Winn, Rev. Sci. Instrum. 46, 1333 (1975).
[CrossRef]

Van Eck, J. L.

Vilain, P.

Widley, C. G.

J. M. Ley, T. H. Christmas, C. G. Widley, Proc. IEEE 117, 1057 (1970).

Winn, K. R.

R. C. Hyer, H. D. Sutphin, K. R. Winn, Rev. Sci. Instrum. 46, 1333 (1975).
[CrossRef]

Wisner, G.

A. J. DeMaria, H. A. Heynau, A. W. Penny, G. Wisner, J. Appl. Phys. 38, 2693 (1967).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

An entirely different technique for generating the fast electrical pulse has been introduced by D. H. Auston, Appl. Phys. Lett. 26, 101 (1975). His technique uses photoconductivity in silicon to turn on and turn off a high voltage with pulses at 0.53 μm and 1.064 μm. However, this technique is not useful for the type of switchout considered here because it requires an isolated mode-locked pulse to begin with that is synchronized to the output pulse train of the oscillator.
[CrossRef]

G. Kachen, L. Steinmetz, J. Kysilka, Appl. Phys. Lett. 13, 229 (1968).
[CrossRef]

J. Appl. Phys.

A. J. DeMaria, H. A. Heynau, A. W. Penny, G. Wisner, J. Appl. Phys. 38, 2693 (1967).
[CrossRef]

Opt. Commun.

D. J. Kuizenga, Opt. Commun. 22, 156 (1977).
[CrossRef]

A. J. Alcock, M. C. Richardson, Opt. Commun. 2, 65 (1970).
[CrossRef]

Proc. IEEE

J. M. Ley, T. H. Christmas, C. G. Widley, Proc. IEEE 117, 1057 (1970).

Rev. Sci. Instrum.

R. C. Hyer, H. D. Sutphin, K. R. Winn, Rev. Sci. Instrum. 46, 1333 (1975).
[CrossRef]

M. Michon, H. Guillet, D. LeGoff, S. Raynaud, Rev. Sci. Instrum. 40, 263 (1969).
[CrossRef]

Other

Quantel International, Inc., 928 Benecia Avenue, Sunnyvale, Calif. 94086, and Xonies, Inc., 6849 Hayvenhurst Avenue, Van Nuys, Calif. 91406, manufacture commercial pulse selectors based on krytron drivers.

Lasermetrics, 111 Galway Place, Teaneck, N.J. 07666.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Avalanche transistor circuits used to drive a single stage of the switchout.

Fig. 2
Fig. 2

Optical transmission window through a single stage of the switchout obtained by illuminating the switchout with a 20-nsec Q-switched pulse.

Fig. 3
Fig. 3

Circuit used to synchronize the switchout to a Q-switched mode-locked pulse train.

Fig. 4
Fig. 4

Optical components in the two-stage switchout.

Fig. 5
Fig. 5

Two-stage avalanche transistor driven switchout without dust covers.

Metrics