Abstract

Interactive computer graphics is applied to the transmission of visual images through the lower atmosphere. The required input data to the computer consist of an atmospheric temperature profile and light-pen sketches of three objects at various distances from the observer. A transfer characteristic, computed from a bundle of rays leaving the observer, maps each object’s actual location into a corresponding image. The three images, and the horizon line, are then simultaneously displayed on the graphics terminal, thus generating a pictoral version of what the observer would see. This program provides an essential aid to the study of atmospheric refraction.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Pernter, F. M. Exner, Meteorologische Optik (Wilhelm Braumüller, Vienna, 1922).
  2. H. L. Sawatzky, W. H. Lehn, Science 192, 1300 (1976).
    [CrossRef] [PubMed]
  3. W. H. Lehn, H. L. Sawatzky, Z. Polarforsch. 45, 120 (December1975).
  4. G. H. Liljequist, “Refraction Phenomena in the Polar Atmosphere,” in Scientific Results, Norwegian-British-Swedish Antarctic Expedition, 1949–52 (Oslo U.P., Oslo, Sweden, 1964), Vol. 2, Part 2.
  5. A. Wegener, Med. Groenl. 42, 125 (1914).
  6. F. Nölke, Phys. Z. 18, 134 (1917).

1976

H. L. Sawatzky, W. H. Lehn, Science 192, 1300 (1976).
[CrossRef] [PubMed]

1975

W. H. Lehn, H. L. Sawatzky, Z. Polarforsch. 45, 120 (December1975).

1917

F. Nölke, Phys. Z. 18, 134 (1917).

1914

A. Wegener, Med. Groenl. 42, 125 (1914).

Exner, F. M.

J. M. Pernter, F. M. Exner, Meteorologische Optik (Wilhelm Braumüller, Vienna, 1922).

Lehn, W. H.

H. L. Sawatzky, W. H. Lehn, Science 192, 1300 (1976).
[CrossRef] [PubMed]

W. H. Lehn, H. L. Sawatzky, Z. Polarforsch. 45, 120 (December1975).

Liljequist, G. H.

G. H. Liljequist, “Refraction Phenomena in the Polar Atmosphere,” in Scientific Results, Norwegian-British-Swedish Antarctic Expedition, 1949–52 (Oslo U.P., Oslo, Sweden, 1964), Vol. 2, Part 2.

Nölke, F.

F. Nölke, Phys. Z. 18, 134 (1917).

Pernter, J. M.

J. M. Pernter, F. M. Exner, Meteorologische Optik (Wilhelm Braumüller, Vienna, 1922).

Sawatzky, H. L.

H. L. Sawatzky, W. H. Lehn, Science 192, 1300 (1976).
[CrossRef] [PubMed]

W. H. Lehn, H. L. Sawatzky, Z. Polarforsch. 45, 120 (December1975).

Wegener, A.

A. Wegener, Med. Groenl. 42, 125 (1914).

Med. Groenl.

A. Wegener, Med. Groenl. 42, 125 (1914).

Phys. Z.

F. Nölke, Phys. Z. 18, 134 (1917).

Science

H. L. Sawatzky, W. H. Lehn, Science 192, 1300 (1976).
[CrossRef] [PubMed]

Z. Polarforsch.

W. H. Lehn, H. L. Sawatzky, Z. Polarforsch. 45, 120 (December1975).

Other

G. H. Liljequist, “Refraction Phenomena in the Polar Atmosphere,” in Scientific Results, Norwegian-British-Swedish Antarctic Expedition, 1949–52 (Oslo U.P., Oslo, Sweden, 1964), Vol. 2, Part 2.

J. M. Pernter, F. M. Exner, Meteorologische Optik (Wilhelm Braumüller, Vienna, 1922).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Temperature profile for Case 1. The heavy dots on the curve indicate the data points that define the profile.

Fig. 2
Fig. 2

Ray trajectories for Case 1. The numbers on the curves give ray angles, in degrees above the horizontal, at the observer’s station.

Fig. 3
Fig. 3

Transfer characteristics for object planes at distances of 10 km, 20 km, and 60 km from the observer’s station (Case 1).

Fig. 4
Fig. 4

Light-pen sketch of a ship 10 km from the observer (Case 1).

Fig. 5
Fig. 5

Light-pen sketch of waves located in object planes 20 km, and 60 km from the observer (Case 1).

Fig. 6
Fig. 6

Composite image transmitted to the observer in Case 1. The coordinate axes are scaled in degrees subtended at the observer’s eye.

Fig. 7
Fig. 7

Temperature profile for Case 2. Data points are shown by heavy dots.

Fig. 8
Fig. 8

Ray trajectories for Case 2. The numbers on the curves give ray angles, in degrees above the horizontal, at the observer’s station.

Fig. 9
Fig. 9

Transfer characteristics for object planes at distances of 60 km, 80 km, and 130 km from the observer’s station (Case 2).

Fig. 10
Fig. 10

Light-pen sketch of a 250-m high mountain. Three such objects are located, respectively, in object planes at distances of 60 km, 80 km, and 130 km (Case 2).

Fig. 11
Fig. 11

Composite image transmitted to the observer in Case 2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ρ ( z ) = β p 0 T ( z ) exp [ g β 0 z d z T ( z ) ] ,
n = 1 + 0.000226 ρ ,
w = sin θ 0 υ 0 [ υ 0 2 u 2 + υ 0 sin ϕ 0 6 u 3 + 1 12 ( υ 0 2 R υ 0 υ 0 sin θ 0 2 υ 0 + υ 0 sin 2 ϕ 0 2 ) u 4 + 1 20 ( υ 0 sin ϕ 0 2 R υ 0 υ 0 sin ϕ 0 sin θ 0 2 υ 0 ) u 5 + υ 0 60 ( υ 2 2 sin 2 θ 0 4 υ 0 2 + 1 4 R 2 υ 0 sin θ 0 2 υ 0 R ) u 6 ] .

Metrics