Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. M. Irvine, J. Opt. Soc. Am. 55, 16 (1965).
    [CrossRef]
  2. S. T. Shipley, J. A. Weinman, J. Opt. Soc. Am. 68, 130 (1978).
    [CrossRef]
  3. H. C. Bryant, A. J. Cox, J. Opt. Soc. Am. 56, 1529 (1966).
    [CrossRef]
  4. P. Chýlek, J. Opt. Soc. Am. 66, 285 (1976).
    [CrossRef]
  5. P. Chýlek, G. W. Grams, R. J. Pinnick, Science 193, 480 (1976).
    [CrossRef]
  6. A. Ashkin, J. M. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977).
    [CrossRef]
  7. P. Chýlek, J. Kiehl, M. Ko, Phys. Rev. A, in press.

1978

1977

A. Ashkin, J. M. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977).
[CrossRef]

1976

P. Chýlek, G. W. Grams, R. J. Pinnick, Science 193, 480 (1976).
[CrossRef]

P. Chýlek, J. Opt. Soc. Am. 66, 285 (1976).
[CrossRef]

1966

1965

Ashkin, A.

A. Ashkin, J. M. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977).
[CrossRef]

Bryant, H. C.

Chýlek, P.

P. Chýlek, G. W. Grams, R. J. Pinnick, Science 193, 480 (1976).
[CrossRef]

P. Chýlek, J. Opt. Soc. Am. 66, 285 (1976).
[CrossRef]

P. Chýlek, J. Kiehl, M. Ko, Phys. Rev. A, in press.

Cox, A. J.

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977).
[CrossRef]

Grams, G. W.

P. Chýlek, G. W. Grams, R. J. Pinnick, Science 193, 480 (1976).
[CrossRef]

Irvine, W. M.

Kiehl, J.

P. Chýlek, J. Kiehl, M. Ko, Phys. Rev. A, in press.

Ko, M.

P. Chýlek, J. Kiehl, M. Ko, Phys. Rev. A, in press.

Pinnick, R. J.

P. Chýlek, G. W. Grams, R. J. Pinnick, Science 193, 480 (1976).
[CrossRef]

Shipley, S. T.

Weinman, J. A.

J. Opt. Soc. Am.

Phys. Rev. Lett.

A. Ashkin, J. M. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977).
[CrossRef]

Science

P. Chýlek, G. W. Grams, R. J. Pinnick, Science 193, 480 (1976).
[CrossRef]

Other

P. Chýlek, J. Kiehl, M. Ko, Phys. Rev. A, in press.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

In previous calculations only the second-order resonances ( b 55 2, a 55 2, b 56 2, a 56 2, and b 57 2) were observed. Thus the solid curve was considered to display the complete fine structure of the Mie scattering characteristics. A detailed computer calculation reveals a set of very narrow peaks (the first-order resonances) that have not been discovered before.

Fig. 2
Fig. 2

What has been considered to be a fine ripple structure around x = 100 is really the structure formed by the third-order resonances ( a 107 3, b 108 3, a 108 3, b 109 3, and a 109 3). Computer calculations with the x increment Δx = 10−7 reveal two additional sets of resonances corresponding to the first and the second resonances in corresponding partial wave amplitudes an and bn.

Fig. 3
Fig. 3

The relative height of the resonance peaks in QPR is a sensitive function of the imaginary part of refractive index. At Im(m) = 10−7 the first resonances disappear, and at Im(m) = 10−5 the second-order resonances are also considerably reduced. The sharp resonances appear also in the normalized cross sections. The lines in QAB denote only the positions of the first- and the second-order resonances. The heights of these resonances are about 2 orders of magnitude higher than indicated by the vertical scale.

Tables (1)

Tables Icon

Table I Positions of Narrow Resonance Peaks Forming a Fine Hippie Structure around x = 50 (m = 1.33 and 1.402) and x = 100 (m = 1.33)

Metrics