Abstract

It is well known that geometrical or dielectric imperfections in conventional graded-index single-mode fibers depolarize light after a few centimeters. A slight improvement in the polarization performance of these fibers is achieved by introducing noncircularity in the core shape. This is evident from the measurements on borosilicate fibers with dumbbell shaped cores. This result is correlated with Marcatili’s analysis, which shows that changing the core geometry, from square to rectangular, does not appreciably alter the difference in the propagation constants of the two fundamental modes with orthogonal polarizations. Thus, the noncircular geometry and the associated increase in stress-induced birefringence introduced during the manufacturing process alone are not sufficient to improve the polarization performance, and the enhancement of the anisotropic birefringence is necessary to achieve single-polarization fibers.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Steinberg, T. A. Giallorenzi, Appl. Opt. 15, 2440 (1976).
    [CrossRef] [PubMed]
  2. V. Ramaswamy, R. D. Standley, D. Sze, W. G. French, Bell Syst. Tech. J. 57, 635, (1978).
  3. W. Eickhoff, O. Krumpholz, Electron. Lett. 12, 405 (1976).
    [CrossRef]
  4. A. Papp, H. Harms, Appl. Opt. 15, 2405 (1976).
    [CrossRef]
  5. R. A. Steinberg, T. G. Giallorenzi, R. G. Priest, Appl. Opt. 16, 2166 (1977).
    [CrossRef] [PubMed]
  6. P. Kaiser, W. G. French, J. R. Simpson, H. M. Presby, in Digest of Topical Meeting on Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977).
  7. E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).
  8. F. P. Kapron, N. F. Borelli, D. B. Keck, IEEE J. Quantum Electron. 8, 222 (1972).
    [CrossRef]
  9. R. H. Stolen, W. Pleibel, C. Lin, “Birefringent Single Mode Fibers in Raman Oscillators,” to be published.
  10. V. Ramaswamy, R. H. Stolen, W. Pleibel, M. D. Divino, “Polarization Maintenance of Elliptical-Clad Birefringent Single Mode Fibers,” to be published.

1978 (1)

V. Ramaswamy, R. D. Standley, D. Sze, W. G. French, Bell Syst. Tech. J. 57, 635, (1978).

1977 (1)

1976 (3)

1972 (1)

F. P. Kapron, N. F. Borelli, D. B. Keck, IEEE J. Quantum Electron. 8, 222 (1972).
[CrossRef]

1969 (1)

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).

Borelli, N. F.

F. P. Kapron, N. F. Borelli, D. B. Keck, IEEE J. Quantum Electron. 8, 222 (1972).
[CrossRef]

Divino, M. D.

V. Ramaswamy, R. H. Stolen, W. Pleibel, M. D. Divino, “Polarization Maintenance of Elliptical-Clad Birefringent Single Mode Fibers,” to be published.

Eickhoff, W.

W. Eickhoff, O. Krumpholz, Electron. Lett. 12, 405 (1976).
[CrossRef]

French, W. G.

V. Ramaswamy, R. D. Standley, D. Sze, W. G. French, Bell Syst. Tech. J. 57, 635, (1978).

P. Kaiser, W. G. French, J. R. Simpson, H. M. Presby, in Digest of Topical Meeting on Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977).

Giallorenzi, T. A.

Giallorenzi, T. G.

Harms, H.

Kaiser, P.

P. Kaiser, W. G. French, J. R. Simpson, H. M. Presby, in Digest of Topical Meeting on Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977).

Kapron, F. P.

F. P. Kapron, N. F. Borelli, D. B. Keck, IEEE J. Quantum Electron. 8, 222 (1972).
[CrossRef]

Keck, D. B.

F. P. Kapron, N. F. Borelli, D. B. Keck, IEEE J. Quantum Electron. 8, 222 (1972).
[CrossRef]

Krumpholz, O.

W. Eickhoff, O. Krumpholz, Electron. Lett. 12, 405 (1976).
[CrossRef]

Lin, C.

R. H. Stolen, W. Pleibel, C. Lin, “Birefringent Single Mode Fibers in Raman Oscillators,” to be published.

Marcatili, E. A. J.

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).

Papp, A.

Pleibel, W.

V. Ramaswamy, R. H. Stolen, W. Pleibel, M. D. Divino, “Polarization Maintenance of Elliptical-Clad Birefringent Single Mode Fibers,” to be published.

R. H. Stolen, W. Pleibel, C. Lin, “Birefringent Single Mode Fibers in Raman Oscillators,” to be published.

Presby, H. M.

P. Kaiser, W. G. French, J. R. Simpson, H. M. Presby, in Digest of Topical Meeting on Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977).

Priest, R. G.

Ramaswamy, V.

V. Ramaswamy, R. D. Standley, D. Sze, W. G. French, Bell Syst. Tech. J. 57, 635, (1978).

V. Ramaswamy, R. H. Stolen, W. Pleibel, M. D. Divino, “Polarization Maintenance of Elliptical-Clad Birefringent Single Mode Fibers,” to be published.

Simpson, J. R.

P. Kaiser, W. G. French, J. R. Simpson, H. M. Presby, in Digest of Topical Meeting on Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977).

Standley, R. D.

V. Ramaswamy, R. D. Standley, D. Sze, W. G. French, Bell Syst. Tech. J. 57, 635, (1978).

Steinberg, R. A.

Stolen, R. H.

V. Ramaswamy, R. H. Stolen, W. Pleibel, M. D. Divino, “Polarization Maintenance of Elliptical-Clad Birefringent Single Mode Fibers,” to be published.

R. H. Stolen, W. Pleibel, C. Lin, “Birefringent Single Mode Fibers in Raman Oscillators,” to be published.

Sze, D.

V. Ramaswamy, R. D. Standley, D. Sze, W. G. French, Bell Syst. Tech. J. 57, 635, (1978).

Appl. Opt. (3)

Bell Syst. Tech. J. (2)

V. Ramaswamy, R. D. Standley, D. Sze, W. G. French, Bell Syst. Tech. J. 57, 635, (1978).

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).

Electron. Lett. (1)

W. Eickhoff, O. Krumpholz, Electron. Lett. 12, 405 (1976).
[CrossRef]

IEEE J. Quantum Electron. (1)

F. P. Kapron, N. F. Borelli, D. B. Keck, IEEE J. Quantum Electron. 8, 222 (1972).
[CrossRef]

Other (3)

R. H. Stolen, W. Pleibel, C. Lin, “Birefringent Single Mode Fibers in Raman Oscillators,” to be published.

V. Ramaswamy, R. H. Stolen, W. Pleibel, M. D. Divino, “Polarization Maintenance of Elliptical-Clad Birefringent Single Mode Fibers,” to be published.

P. Kaiser, W. G. French, J. R. Simpson, H. M. Presby, in Digest of Topical Meeting on Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Fiber with dumbbell shaped core.

Fig. 2
Fig. 2

(a) Micrograph of the single-mode fiber viewed with bottom illumination. The near field represents the energy distribution, and therefore the dimensional measurement from the micrograph can be misleading. However, the core dimensions are approximately 10 μm × 4 μm with the height of the center region equal to 3 μm. The core is almost pure silica with Δn = 0.0017. (b) The far-field radiation pattern of the fiber illustrated in Fig. 2. The radiation pattern is elliptical and essentially Gaussian along the major and minor axes of the fiber. The ratio of 1/e power points along these directions is 1.20.

Fig. 3
Fig. 3

Ratio R of the power present in both polarizations of the single-mode fiber after successive cuts in fiber length at the output. Solid lines represent the absolute value of 20 log10|tan(ϕ/2)|, and the solid circles are measured points.

Fig. 4
Fig. 4

Curves of constant beat wavelength L for isotropic homogeneous rectangular core fiber. Useful region of the calculations is shaded. It is bounded by curve A indicating the first higher order mode and curve B delimiting the region where Marcatili’s approximations are valid.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

L = 2 π / Δ β ,
L = n c λ ( υ + 2 ) 3 8 π 2 ( Δ n ) 2 { [ υ + 2 υ ( a y / a x ) + 2 ] 3 1 } 1 ,
p 2 [ a x + A π ( n s n c ) 2 ] 2 + q 2 [ a y + A π ] 2 = ( A 2 ) 2 ,
L λ b 8 π 2 λ n c ( υ + 2 ) 3 ( Δ n b ) 2 { [ υ + 2 υ ( a y / a x ) + 2 ] 3 1 } ,

Metrics