Abstract

The enhancement of nonlinear interactions in the scanning optical microscope by placing the object in a resonant cavity is discussed. The effect of resonance of the primary radiation is also considered. Practical geometries for the resonant scanning optical microscope are given.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Davidovits, M. D. Egger, Appl. Opt. 10, 1615 (1971).
    [Crossref] [PubMed]
  2. R. Kompfner, R. A. Lemons, Appl. Phys. Lett. 28295 (1976).
    [Crossref]
  3. R. Hellwarth, P. Christensen, Opt. Commun. 12, 318 (1974).
    [Crossref]
  4. F. N. H. Robinson, Bell Syst. Tech. J. 46, 913 (1967).
  5. B. B. Johnson, W. L. Peticolas, Ann. Rev. Phys. Chem. 27, 465 (1976).
    [Crossref]
  6. D. J. Bradley, M. H. R. Hutchins, H. Koetser, Proc. R. Soc. London, Ser. A: 329, 105 (1972).
    [Crossref]
  7. K. C. Rustagi, J. Ducuing, Opt. Commun. 10, 258 (1974).
    [Crossref]
  8. J. P. Hermann, J. Ducuing, J. Appl Phys. 45, 5100 (1974).
    [Crossref]
  9. B. F. Levine, C. G. Bethea, J. Chem. Phys. 63, 2666 (1975).
    [Crossref]
  10. P. Rentzepis, Photochem. Photobiol. 8, 579 (1968).
    [Crossref] [PubMed]
  11. A. Ashkin, G. D. Boyd, IEEE J. Quantum Electron. QE-2, 109 (1966).
    [Crossref]

1976 (2)

R. Kompfner, R. A. Lemons, Appl. Phys. Lett. 28295 (1976).
[Crossref]

B. B. Johnson, W. L. Peticolas, Ann. Rev. Phys. Chem. 27, 465 (1976).
[Crossref]

1975 (1)

B. F. Levine, C. G. Bethea, J. Chem. Phys. 63, 2666 (1975).
[Crossref]

1974 (3)

K. C. Rustagi, J. Ducuing, Opt. Commun. 10, 258 (1974).
[Crossref]

J. P. Hermann, J. Ducuing, J. Appl Phys. 45, 5100 (1974).
[Crossref]

R. Hellwarth, P. Christensen, Opt. Commun. 12, 318 (1974).
[Crossref]

1972 (1)

D. J. Bradley, M. H. R. Hutchins, H. Koetser, Proc. R. Soc. London, Ser. A: 329, 105 (1972).
[Crossref]

1971 (1)

1968 (1)

P. Rentzepis, Photochem. Photobiol. 8, 579 (1968).
[Crossref] [PubMed]

1967 (1)

F. N. H. Robinson, Bell Syst. Tech. J. 46, 913 (1967).

1966 (1)

A. Ashkin, G. D. Boyd, IEEE J. Quantum Electron. QE-2, 109 (1966).
[Crossref]

Ashkin, A.

A. Ashkin, G. D. Boyd, IEEE J. Quantum Electron. QE-2, 109 (1966).
[Crossref]

Bethea, C. G.

B. F. Levine, C. G. Bethea, J. Chem. Phys. 63, 2666 (1975).
[Crossref]

Boyd, G. D.

A. Ashkin, G. D. Boyd, IEEE J. Quantum Electron. QE-2, 109 (1966).
[Crossref]

Bradley, D. J.

D. J. Bradley, M. H. R. Hutchins, H. Koetser, Proc. R. Soc. London, Ser. A: 329, 105 (1972).
[Crossref]

Christensen, P.

R. Hellwarth, P. Christensen, Opt. Commun. 12, 318 (1974).
[Crossref]

Davidovits, P.

Ducuing, J.

J. P. Hermann, J. Ducuing, J. Appl Phys. 45, 5100 (1974).
[Crossref]

K. C. Rustagi, J. Ducuing, Opt. Commun. 10, 258 (1974).
[Crossref]

Egger, M. D.

Hellwarth, R.

R. Hellwarth, P. Christensen, Opt. Commun. 12, 318 (1974).
[Crossref]

Hermann, J. P.

J. P. Hermann, J. Ducuing, J. Appl Phys. 45, 5100 (1974).
[Crossref]

Hutchins, M. H. R.

D. J. Bradley, M. H. R. Hutchins, H. Koetser, Proc. R. Soc. London, Ser. A: 329, 105 (1972).
[Crossref]

Johnson, B. B.

B. B. Johnson, W. L. Peticolas, Ann. Rev. Phys. Chem. 27, 465 (1976).
[Crossref]

Koetser, H.

D. J. Bradley, M. H. R. Hutchins, H. Koetser, Proc. R. Soc. London, Ser. A: 329, 105 (1972).
[Crossref]

Kompfner, R.

R. Kompfner, R. A. Lemons, Appl. Phys. Lett. 28295 (1976).
[Crossref]

Lemons, R. A.

R. Kompfner, R. A. Lemons, Appl. Phys. Lett. 28295 (1976).
[Crossref]

Levine, B. F.

B. F. Levine, C. G. Bethea, J. Chem. Phys. 63, 2666 (1975).
[Crossref]

Peticolas, W. L.

B. B. Johnson, W. L. Peticolas, Ann. Rev. Phys. Chem. 27, 465 (1976).
[Crossref]

Rentzepis, P.

P. Rentzepis, Photochem. Photobiol. 8, 579 (1968).
[Crossref] [PubMed]

Robinson, F. N. H.

F. N. H. Robinson, Bell Syst. Tech. J. 46, 913 (1967).

Rustagi, K. C.

K. C. Rustagi, J. Ducuing, Opt. Commun. 10, 258 (1974).
[Crossref]

Ann. Rev. Phys. Chem. (1)

B. B. Johnson, W. L. Peticolas, Ann. Rev. Phys. Chem. 27, 465 (1976).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. Kompfner, R. A. Lemons, Appl. Phys. Lett. 28295 (1976).
[Crossref]

Bell Syst. Tech. J. (1)

F. N. H. Robinson, Bell Syst. Tech. J. 46, 913 (1967).

IEEE J. Quantum Electron. (1)

A. Ashkin, G. D. Boyd, IEEE J. Quantum Electron. QE-2, 109 (1966).
[Crossref]

J. Appl Phys. (1)

J. P. Hermann, J. Ducuing, J. Appl Phys. 45, 5100 (1974).
[Crossref]

J. Chem. Phys. (1)

B. F. Levine, C. G. Bethea, J. Chem. Phys. 63, 2666 (1975).
[Crossref]

Opt. Commun. (2)

K. C. Rustagi, J. Ducuing, Opt. Commun. 10, 258 (1974).
[Crossref]

R. Hellwarth, P. Christensen, Opt. Commun. 12, 318 (1974).
[Crossref]

Photochem. Photobiol. (1)

P. Rentzepis, Photochem. Photobiol. 8, 579 (1968).
[Crossref] [PubMed]

Proc. R. Soc. London, Ser. A (1)

D. J. Bradley, M. H. R. Hutchins, H. Koetser, Proc. R. Soc. London, Ser. A: 329, 105 (1972).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Nonlinear scanning optical microscope resonant at the signal frequency.

Fig. 2
Fig. 2

Double resonator harmonic scanning optical microscope.

Fig. 3
Fig. 3

Doubly resonant harmonic scanning optical microscope using nonspherical lens surfaces.

Fig. 4
Fig. 4

Doubly resonant harmonic scanning optical microscope using dielectric zone lenses.

Fig. 5
Fig. 5

Preferred geometry for the doubly resonant harmonic scanning optical microscrope utilizing aplanatic meniscus lenses.

Fig. 6
Fig. 6

Reflection geometry for the resonant scanning optical microscope.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

l = ( 4 π 2 w 0 4 ) / ( λ 2 d ) ,
Σ ( s ) = 2 ( s 1 + s 2 + s 3 ) + s 4 = 4 ( s 1 + s 2 + s 3 ) .
Q = ( 2 π d ) / [ λ Σ ( s ) ] ,
τ = ( 2 Q ) / ω
d 1 2 c t Σ ( s )
s 2 ~ 0.125 N 3 / 2 ,
Σ ( s ) = 4 ( 2 × 10 3 + 10 4 + 5 × 10 3 ) 2.8 × 10 2 .
S = 2 S 0 2.8 × 10 2 70 S 0 .
E r = E r [ 1 Σ ( s ) / 2 ] + E 0
E r Σ ( s ) = 2 E 0 .
S = 4 S 0 s 4 [ Σ ( s ) ] 2 .
E = E [ 1 Σ ( p ) / 2 ] + E 0 ( p 4 ) 1 / 2
E Σ ( p ) = 2 E 0 ( p 4 ) 1 / 2 .
P = 4 P 0 p 4 [ Σ ( p ) ] 2 .

Metrics