Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. B. Hocker, W. K. Burns, IEEE. J. Quantum Electron. QE-11, 270 (1975); D. B. Keck, in Fundamentals of Optical Fiber Communications, M. K. Barnoski, Ed. (Academic, New York, 1976), Chap. 1.
    [CrossRef]
  2. S. Timoshenko, Strength of Materials (Van Nostrand, New York, 1958).

1975 (1)

G. B. Hocker, W. K. Burns, IEEE. J. Quantum Electron. QE-11, 270 (1975); D. B. Keck, in Fundamentals of Optical Fiber Communications, M. K. Barnoski, Ed. (Academic, New York, 1976), Chap. 1.
[CrossRef]

Burns, W. K.

G. B. Hocker, W. K. Burns, IEEE. J. Quantum Electron. QE-11, 270 (1975); D. B. Keck, in Fundamentals of Optical Fiber Communications, M. K. Barnoski, Ed. (Academic, New York, 1976), Chap. 1.
[CrossRef]

Hocker, G. B.

G. B. Hocker, W. K. Burns, IEEE. J. Quantum Electron. QE-11, 270 (1975); D. B. Keck, in Fundamentals of Optical Fiber Communications, M. K. Barnoski, Ed. (Academic, New York, 1976), Chap. 1.
[CrossRef]

Timoshenko, S.

S. Timoshenko, Strength of Materials (Van Nostrand, New York, 1958).

IEEE. J. Quantum Electron. (1)

G. B. Hocker, W. K. Burns, IEEE. J. Quantum Electron. QE-11, 270 (1975); D. B. Keck, in Fundamentals of Optical Fiber Communications, M. K. Barnoski, Ed. (Academic, New York, 1976), Chap. 1.
[CrossRef]

Other (1)

S. Timoshenko, Strength of Materials (Van Nostrand, New York, 1958).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Apparatus for using optical fibers to measure strain in cantilever bar.

Fig. 2
Fig. 2

Displacement factor (total displacement ÷ number of fringes) vs number of fringes N for apparatus shown in Fig. 1.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ = β Δ L + L Δ β .
L Δ β = L d β d n Δ n + L d β d D Δ D .
Δ ( 1 n 2 ) i = j = 1 6 p i j S j ,
S j = [ μ μ 0 0 0 ] .
Δ ( 1 n 2 ) 2,3 = ( 1 μ ) p 12 μ p 11 .
Δ n = 1 2 n 3 Δ ( 1 n 2 ) 2,3 = 1 2 n 3 [ ( 1 μ ) p 12 μ p 11 ] .
Δ ϕ L = β 1 2 β n 2 [ ( 1 μ ) p 12 μ p 11 ] + V 3 μ 2 β D 2 d b d V .
Δ ϕ L = 1.50 × 10 7 2.52 × 10 6 + 1.63 × 10 4 = 1.25 × 10 7 m 1 .
Δ ϕ L = β 1 2 β n 2 [ ( 1 μ ) p 12 μ p 11 ] .
( x ) = ( 3 d a x ) / l 3 ,
¯ = 3 2 d a l 2 .

Metrics