Abstract

The electrodeposition of chrome black selective surfaces on polished metal substrates has been studied by measuring the properties of samples as a function of plating time. Optical measurements show that in the first 50 sec a lossy dielectric film (apparently Cr2O3) of 0.6-μm thickness is deposited. The weights of deposits and their emittances, as well as the surface profiles of the samples, show that most (0.4–0.5 μm) of this dielectric film falls off between 50-sec and 60-sec plating time. An absorbing layer of chromium metal particles is then deposited on the remaining dielectric film to produce the high solar absorptance characteristic of these films. Calculations based on a particulate chromium deposit linearly graded with air using a recent theory of McKenzie and McPhedran are able to reproduce the film properties with deposit weights similar to those actually measured. It is shown that the thickness of the dielectric layer left under the particulate chromium deposit is important in obtaining the optimum performance in the trade-off between solar absorptance and thermal emittance.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Tabor, “Selective Radiation; Wavelength Discrimination,” Transactions on the Conf. Use of Solar Energy, Vol. 2, Tucson, Arizona (1955).
  2. D. J. Close, CSIRO Engineering Section Report E.D.7 (1962).
  3. R. N. Schmidt, K. C. Park, Appl. Opt. 4, 917 (1965).
    [Crossref]
  4. G. L. Harding, J. Vac. Sci. Technol. 13, 1070 (1976).
    [Crossref]
  5. G. E. McDonald, Sol. Energy 17, 119 (1975).
    [Crossref]
  6. D. M. Mattox, J. Vac. Sci. Technol. 13, 127 (1976).
    [Crossref]
  7. R. R. Sowell, D. M. Mattox, in Proceedings of Coatings for Solar Energy Symposium (American Electroplaters Society, Atlanta, 1976).
  8. G. L. Harding, Thin Solid Films 38, 109 (1976).
    [Crossref]
  9. J. C. Fan, S. A. Spura, Appl. Phys. Lett. 30, 513 (1977).
  10. D. R. McKenzie, R. C. McPhedran, Nature 265, 128 (1977).
    [Crossref]
  11. R. C. McPhedran, D. R. McKenzie, Proc. R. Soc. London 359, 45 (1978).
    [Crossref]
  12. T. Lyman, Ed., Metals Handbook (American Society for Metals, Metals, Park, Ohio, 1964), Vol. 2, p. 317.
  13. L. Weisberg, Met. Finish. 38, 318 (1940).
  14. L. Sivaswamy, S. Gouri, B. A. Shenoi, Met. Finish. 72, 48 (1974).
  15. K. E. Nelson, E. E. Luedke, J. T. Bevans, J. Spacecr. Rockets 3, 758 (1966).
    [Crossref]
  16. K. Yass, H. B. Curtis, NASA Technical Memorandum TM X-3059 (U.S. Govt. Printing Office, Washington, D.C., 1974).
  17. P. B. Johnson, R. W. Christy, Phys. Rev. B 9, 5056 (1974).
    [Crossref]
  18. Rayleigh, Philos. Mag. 34, 481 (1892).
  19. L. Harris, The Optical Properties of Metal Blacks and Carbon Blacks, Monograph Series 1 (Eppley Foundation for Research, Newport, R. I., 1967).
  20. D. R. McKenzie, J. Opt. Soc. Am. 66, 249 (1976).
    [Crossref]
  21. I. Ritchie, B. Window, Appl. Opt. 16, 1438 (1977).
    [Crossref] [PubMed]

1978 (1)

R. C. McPhedran, D. R. McKenzie, Proc. R. Soc. London 359, 45 (1978).
[Crossref]

1977 (3)

J. C. Fan, S. A. Spura, Appl. Phys. Lett. 30, 513 (1977).

D. R. McKenzie, R. C. McPhedran, Nature 265, 128 (1977).
[Crossref]

I. Ritchie, B. Window, Appl. Opt. 16, 1438 (1977).
[Crossref] [PubMed]

1976 (4)

D. R. McKenzie, J. Opt. Soc. Am. 66, 249 (1976).
[Crossref]

G. L. Harding, J. Vac. Sci. Technol. 13, 1070 (1976).
[Crossref]

D. M. Mattox, J. Vac. Sci. Technol. 13, 127 (1976).
[Crossref]

G. L. Harding, Thin Solid Films 38, 109 (1976).
[Crossref]

1975 (1)

G. E. McDonald, Sol. Energy 17, 119 (1975).
[Crossref]

1974 (2)

L. Sivaswamy, S. Gouri, B. A. Shenoi, Met. Finish. 72, 48 (1974).

P. B. Johnson, R. W. Christy, Phys. Rev. B 9, 5056 (1974).
[Crossref]

1966 (1)

K. E. Nelson, E. E. Luedke, J. T. Bevans, J. Spacecr. Rockets 3, 758 (1966).
[Crossref]

1965 (1)

1940 (1)

L. Weisberg, Met. Finish. 38, 318 (1940).

1892 (1)

Rayleigh, Philos. Mag. 34, 481 (1892).

Bevans, J. T.

K. E. Nelson, E. E. Luedke, J. T. Bevans, J. Spacecr. Rockets 3, 758 (1966).
[Crossref]

Christy, R. W.

P. B. Johnson, R. W. Christy, Phys. Rev. B 9, 5056 (1974).
[Crossref]

Close, D. J.

D. J. Close, CSIRO Engineering Section Report E.D.7 (1962).

Curtis, H. B.

K. Yass, H. B. Curtis, NASA Technical Memorandum TM X-3059 (U.S. Govt. Printing Office, Washington, D.C., 1974).

Fan, J. C.

J. C. Fan, S. A. Spura, Appl. Phys. Lett. 30, 513 (1977).

Gouri, S.

L. Sivaswamy, S. Gouri, B. A. Shenoi, Met. Finish. 72, 48 (1974).

Harding, G. L.

G. L. Harding, Thin Solid Films 38, 109 (1976).
[Crossref]

G. L. Harding, J. Vac. Sci. Technol. 13, 1070 (1976).
[Crossref]

Harris, L.

L. Harris, The Optical Properties of Metal Blacks and Carbon Blacks, Monograph Series 1 (Eppley Foundation for Research, Newport, R. I., 1967).

Johnson, P. B.

P. B. Johnson, R. W. Christy, Phys. Rev. B 9, 5056 (1974).
[Crossref]

Luedke, E. E.

K. E. Nelson, E. E. Luedke, J. T. Bevans, J. Spacecr. Rockets 3, 758 (1966).
[Crossref]

Mattox, D. M.

D. M. Mattox, J. Vac. Sci. Technol. 13, 127 (1976).
[Crossref]

R. R. Sowell, D. M. Mattox, in Proceedings of Coatings for Solar Energy Symposium (American Electroplaters Society, Atlanta, 1976).

McDonald, G. E.

G. E. McDonald, Sol. Energy 17, 119 (1975).
[Crossref]

McKenzie, D. R.

R. C. McPhedran, D. R. McKenzie, Proc. R. Soc. London 359, 45 (1978).
[Crossref]

D. R. McKenzie, R. C. McPhedran, Nature 265, 128 (1977).
[Crossref]

D. R. McKenzie, J. Opt. Soc. Am. 66, 249 (1976).
[Crossref]

McPhedran, R. C.

R. C. McPhedran, D. R. McKenzie, Proc. R. Soc. London 359, 45 (1978).
[Crossref]

D. R. McKenzie, R. C. McPhedran, Nature 265, 128 (1977).
[Crossref]

Nelson, K. E.

K. E. Nelson, E. E. Luedke, J. T. Bevans, J. Spacecr. Rockets 3, 758 (1966).
[Crossref]

Park, K. C.

Rayleigh,

Rayleigh, Philos. Mag. 34, 481 (1892).

Ritchie, I.

Schmidt, R. N.

Shenoi, B. A.

L. Sivaswamy, S. Gouri, B. A. Shenoi, Met. Finish. 72, 48 (1974).

Sivaswamy, L.

L. Sivaswamy, S. Gouri, B. A. Shenoi, Met. Finish. 72, 48 (1974).

Sowell, R. R.

R. R. Sowell, D. M. Mattox, in Proceedings of Coatings for Solar Energy Symposium (American Electroplaters Society, Atlanta, 1976).

Spura, S. A.

J. C. Fan, S. A. Spura, Appl. Phys. Lett. 30, 513 (1977).

Tabor, H.

H. Tabor, “Selective Radiation; Wavelength Discrimination,” Transactions on the Conf. Use of Solar Energy, Vol. 2, Tucson, Arizona (1955).

Weisberg, L.

L. Weisberg, Met. Finish. 38, 318 (1940).

Window, B.

Yass, K.

K. Yass, H. B. Curtis, NASA Technical Memorandum TM X-3059 (U.S. Govt. Printing Office, Washington, D.C., 1974).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

J. C. Fan, S. A. Spura, Appl. Phys. Lett. 30, 513 (1977).

J. Opt. Soc. Am. (1)

J. Spacecr. Rockets (1)

K. E. Nelson, E. E. Luedke, J. T. Bevans, J. Spacecr. Rockets 3, 758 (1966).
[Crossref]

J. Vac. Sci. Technol. (2)

D. M. Mattox, J. Vac. Sci. Technol. 13, 127 (1976).
[Crossref]

G. L. Harding, J. Vac. Sci. Technol. 13, 1070 (1976).
[Crossref]

Met. Finish. (2)

L. Weisberg, Met. Finish. 38, 318 (1940).

L. Sivaswamy, S. Gouri, B. A. Shenoi, Met. Finish. 72, 48 (1974).

Nature (1)

D. R. McKenzie, R. C. McPhedran, Nature 265, 128 (1977).
[Crossref]

Philos. Mag. (1)

Rayleigh, Philos. Mag. 34, 481 (1892).

Phys. Rev. B (1)

P. B. Johnson, R. W. Christy, Phys. Rev. B 9, 5056 (1974).
[Crossref]

Proc. R. Soc. London (1)

R. C. McPhedran, D. R. McKenzie, Proc. R. Soc. London 359, 45 (1978).
[Crossref]

Sol. Energy (1)

G. E. McDonald, Sol. Energy 17, 119 (1975).
[Crossref]

Thin Solid Films (1)

G. L. Harding, Thin Solid Films 38, 109 (1976).
[Crossref]

Other (6)

K. Yass, H. B. Curtis, NASA Technical Memorandum TM X-3059 (U.S. Govt. Printing Office, Washington, D.C., 1974).

R. R. Sowell, D. M. Mattox, in Proceedings of Coatings for Solar Energy Symposium (American Electroplaters Society, Atlanta, 1976).

H. Tabor, “Selective Radiation; Wavelength Discrimination,” Transactions on the Conf. Use of Solar Energy, Vol. 2, Tucson, Arizona (1955).

D. J. Close, CSIRO Engineering Section Report E.D.7 (1962).

T. Lyman, Ed., Metals Handbook (American Society for Metals, Metals, Park, Ohio, 1964), Vol. 2, p. 317.

L. Harris, The Optical Properties of Metal Blacks and Carbon Blacks, Monograph Series 1 (Eppley Foundation for Research, Newport, R. I., 1967).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

The thermal emittance at 30°C (closed circles), measured using a rotating cavity emissometer,15 and the thermal emittance at 80°C (open circles), measured using a Land surface thermometer, are given for the central region of the sample as a function of plating time. The area density computed from the total deposit mass is shown also as a function of plating time.

Fig. 2
Fig. 2

The solar absorptance is shown as a function of plating time for the films.

Fig. 3
Fig. 3

Optical micrographs of four samples are shown. The samples are labeled by the times of plating. Sample 40 shows the uniform dielectric film with some pitting, sample 55 shows large regions where the dielectric film has fallen off, sample 65 shows regions where the black particulate chromium film is on the reduced dielectric layer, and sample 80 shows the surface completely covered by the particulate material.

Fig. 4
Fig. 4

Surface profile scans obtained using a Talysurf instrument are shown of samples coated for various times.

Fig. 5
Fig. 5

Integrated reflectance curves are shown as a function of wavelength for samples plated for 0 sec, 20 sec, and 40 sec. The dashed curves are explained in the text.

Fig. 6
Fig. 6

Integrated reflectance curves are shown as a function of wavelength for samples plated for 0, 50, 55, 60, 65, 70, and 80 sec. The dashed curve is that calculated for a uniform dielectric film of 0.60-μm thickness with dielectric constant as in Fig. 8.

Fig. 7
Fig. 7

The specular reflectance of some of the samples at 1–10-μm wavelength is given. The samples are labeled by their plating times.

Fig. 8
Fig. 8

The imaginary part (k) of the refractive index used to derive the fitted curves in Figs. 5 and 6 is shown as a function of wavelengh.

Fig. 9
Fig. 9

Calculated reflectance curves are shown for linearly graded films of particulate chromium of varying area density on (a) no dielectric on nickel, (b) 0.05-μm dielectric on nickel, and (c) 0.1-μm dielectric on nickel. (A thickness of 0.1 μm of particulate chromium corresponds to an area density of 0.21 g m−2.)

Fig. 10
Fig. 10

Calculated solar absorptances of particulate chromium films on dielectric material on nickel substrates for normally incident radiation are shown as a function of the mass of particulate film deposited. The full curves are for particulate film linearly graded with air on 0-μm, 0.5-μm, or 0.1-μm dielectric on the nickel substrate (Fig. 9), and the dashed curve is for a particulate film graded with air in a cosine profile on 0.05-μm dielectric on the nickel substrate.

Tables (1)

Tables Icon

Table I Center Line Average Roughness

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε ε j ε + 2 ε j = q ε i ε j ε i + 2 ε j ,

Metrics