## Abstract

A new type of hologram that combines computer-generated holograms with volume holograms is described. This hologram allows arbitrary selection of the location and color of a computer-generated image when white light illumination is used. Potential applications include optical information processing, holographic optical elements, multicolor displays, and lens testing. Calculations are made to determine the range of wavelengths possible for image reconstruction. Experimental results are given and discussed.

© 1978 Optical Society of America

Full Article |

PDF Article
### Equations (8)

Equations on this page are rendered with MathJax. Learn more.

(1)
$${\theta}_{f}=\left({\theta}_{1}+{\theta}_{2}\right)/2.$$
(2)
$$2d\phantom{\rule{0.2em}{0ex}}\text{sin}{\theta}_{{B}_{\text{construction}}}={\mathrm{\lambda}}_{c},$$
(3)
$$d=\frac{{\mathrm{\lambda}}_{c}}{2\phantom{\rule{0.2em}{0ex}}\text{sin}\left[\left({\theta}_{2}-{\theta}_{1}\right)/2\right]}.$$
(4)
$$2d\phantom{\rule{0.2em}{0ex}}\text{sin}{\theta}_{{B}_{\text{readout}}}={\mathrm{\lambda}}_{r}$$
(5)
$${\theta}_{{B}_{\text{readout}}}={\theta}_{f}-{\theta}_{i}=\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.\left({\theta}_{1}+{\theta}_{2}\right)-{\theta}_{i}.$$
(6)
$${\mathrm{\lambda}}_{r}={\mathrm{\lambda}}_{c}\frac{\text{sin}\left\{\left[\left({\theta}_{1}+{\theta}_{2}\right)/2\right]-{\theta}_{i}\right\}}{\text{sin}\left[\left({\theta}_{2}-{\theta}_{1}\right)/2\right]}.$$
(7)
$${\mathrm{\lambda}}_{r}^{\prime}=\alpha {\mathrm{\lambda}}_{c}\frac{\text{sin}\left\{\left[\left({\theta}_{1}+{\theta}_{2}\right)/2\right]-{\theta}_{i}\right\}}{\text{sin}\left[\left({\theta}_{2}-{\theta}_{1}\right)/2\right]}.$$
(8)
$${\theta}_{r}=2{\theta}_{f}-{\theta}_{i}={\theta}_{1}+{\theta}_{2}-{\theta}_{i}.$$