Abstract

A holographic method has been developed that uses a single wavelength in the recording process to generate a multicolor image under white light reconstruction. The final product is a superposition of rainbow holograms, each of which is recorded with a specific orientation of the reference beam. The result is that each scene is encoded with a specific color. The image quality is analyzed and compared with that of other rainbow holograms.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Benton, J. Opt. Soc. Am. 59, 1545A (1969).
  2. E. N. Leith, Sci. Am. 235, 80 (1976).
    [CrossRef]
  3. P. Hariharan et al., Opt. Lett. 1, 8 (1977).
    [CrossRef] [PubMed]
  4. J. C. Wyant, Optical Sciences Center; private communication.
  5. R. J. Collier et al., Optical Holography (Academic, New York, 1971), pp. 58–78.

1977 (1)

1976 (1)

E. N. Leith, Sci. Am. 235, 80 (1976).
[CrossRef]

1969 (1)

S. A. Benton, J. Opt. Soc. Am. 59, 1545A (1969).

Benton, S. A.

S. A. Benton, J. Opt. Soc. Am. 59, 1545A (1969).

Collier, R. J.

R. J. Collier et al., Optical Holography (Academic, New York, 1971), pp. 58–78.

Hariharan, P.

Leith, E. N.

E. N. Leith, Sci. Am. 235, 80 (1976).
[CrossRef]

Wyant, J. C.

J. C. Wyant, Optical Sciences Center; private communication.

J. Opt. Soc. Am. (1)

S. A. Benton, J. Opt. Soc. Am. 59, 1545A (1969).

Opt. Lett. (1)

Sci. Am. (1)

E. N. Leith, Sci. Am. 235, 80 (1976).
[CrossRef]

Other (2)

J. C. Wyant, Optical Sciences Center; private communication.

R. J. Collier et al., Optical Holography (Academic, New York, 1971), pp. 58–78.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Natural color method. Step 1—the first-generation holograms are recorded on three separate plates using three distinct wavelengths; λ1, λ2, and λ3. Step 2—the hologram is masked with a slit and is reconstructed with the beam conjugate to the original reference and recorded on H2. This is repeated for all holograms. Step 3—the position of the exit pupil is dispersed in the spectrum. Notice the exit pupils of the original color coincide in the original position of the slit. H2 is shown in three pieces, but the actual one is the superposition of the three. H is the holographic plate, R is the reference wave, and O is the object wave.

Fig. 2
Fig. 2

Image blur due to the overlap of exit pupils.

Fig. 3
Fig. 3

Pseudocolor method. Step 1—three holograms are made out of the object with a different shade but in the same wavelength λ. Step 2—the real images through a horizontal slit are recorded with the reference beam angle shifted in each exposure. They are superposed on one plate. Step 3—the shift of the reference beam angle is converted into the variation of the image color under white light illumination. H is the holographic plate, R is the reference wave, and O is the object wave.

Fig. 4
Fig. 4

Increment of the reference beam angle determining the image color. (a) Recording of the hologram with the reference beam from θ + Δθ in wavelength λ. (b) Playback with white light from θ. Evaluating the image from the original position of the slit.

Fig. 5
Fig. 5

White light reconstruction of the hologram that was recorded with a single wavelength at 514.5 nm.

Tables (1)

Tables Icon

Table I Comparison of the Three Holograms

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

x p = x I z 1 z r + μ x 1 z I z r μ x r z I z 1 z 1 z r + μ z I z r μ z I z 1 ,
y p = y I z 1 z r + μ y 1 z I z r μ y r z I z 1 z 1 z r + μ z I z r μ z I z 1 ,
z p = z I z 1 z r z 1 z r + μ z I z r μ z I z 1 ,
μ ( λ + λ ) / λ .
z r = z I = .
x r = x I = 0.
x p = x 1 ,
y p = y 1 + ( 1 μ tan θ I tan θ r ) z 1 ,
z p = 1 μ z 1 ,
d ( sin θ + sin α ) = λ ,
w 2 L < sin α < w 2 L .
d ( sin θ + sin β ) = λ + λ ,
w 2 L < sin β < w 2 L .
λ = sin β sin α sin θ λ
λ max = λ + w L sin θ λ λ min = λ w L sin θ λ .
blu r y = | y p max y p min | = | ( λ λ w λ L sin θ λ λ + w λ L sin θ ) ( tan θ ) z 1 | .
blu r y | 2 w L cos θ z 1 | .
blu r z = | z p max z p min | = | ( λ λ w λ L sin θ λ λ + w λ L sin θ ) z 1 | .
blu r z | 2 w L sin θ z 1 | .
blu r diffraction = 2 λ ( L + z 1 ) w .
w opt = [ λ L ( L + z 1 ) / z 1 ] 1 / 2 .
d = λ / ( sin θ + Δ θ cos θ ) .
d sin θ = λ + Δ λ .
Δ θ = Δ λ λ + Δ λ tan θ .
θ r = θ + Δ θ , θ I = θ , μ = ( λ + Δ λ ) / λ .
y p = y 1 + [ λ λ + Δ λ tan θ tan ( θ + Δ θ ) ] z 1 .
y p = y 1 + [ Δ λ λ + Δ λ tan θ Δ θ sec 2 θ ] z 1 .
y p = y 1 + ( Δ λ λ + Δ λ tan θ Δ λ λ + Δ λ tan θ sec 2 θ ) z 1 ,
y p = y 1 + ( Δ λ λ + Δ λ tan 3 θ ) z 1 .
Δ y p = y p max y p min = ( Δ λ λ + Δ λ Δ λ λ Δ λ ) ( tan 3 θ ) z 1 Δ y p ( 2 Δ λ λ tan 3 θ ) z 1 .
Δ z p [ ( 2 Δ λ ) / λ ] z 1 .

Metrics