Abstract

A pyroelectric (triglycine sulfate) vidicon tube has been used in conjunction with an optical multichannel analyzer (OMA) to obtain ir (1–30-μm) spectral information. The system can detect continuous as well as pulsed ir signals. Improvement of SNR through accumulation of data in memory has been demonstrated. Various parameters that affect the performance of the system include variation of sensitivity across the target, thermal diffusion, discharge lag, thermal lag, and noise. The applicability of the system to ir absorption and laser (cw and pulsed emission) spectrometry has been demonstrated.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “Advanced Scanner and Imaging Systems for Earth Observations,” NASA Report SP-335 (December1972).
  2. M. J. Milano, H. L. Pardue, T. E. Cook, R. E. Santini, D. W. Margerum, J. M. T. Raycheba, Anal. Chem. 46, 374 (1974).
    [CrossRef]
  3. Y. Talmi, Anal. Chem. 47, 658A (1975).
  4. Ref. 3, p. 697A.
  5. G. G. Olson, American Laboratory (February1972).
  6. OMA Catalog, Princeton Applied Research Corporation, P.O. Box 2565, Princeton, N.J. 08540.
  7. K. W. Busch, N. G. Howell, G. H. Morrison, Anal. Chem. 46, 575 (1975).
    [CrossRef]
  8. C. N. Helmick, SPIE Proc. 62, 177 (1975); see also C. N. Helmick, W. H. Woodworth, Ferroelectrics 11, 309 (1976).
    [CrossRef]
  9. “Supplement to Application Note APV-6075,” Thomson-CSF, Groupment Tubes Electroniques (February1976).
  10. “Pyricon–An Introduction to Modern Thermal Imaging Technology,” Thomson-CSF, Application Note APV-6075 (November1975).
  11. Experiments were carried out at the Department of Chemistry, Booklyn College, SUNY, Brooklyn, N.Y. 11210, courtesy of A. Ron.
  12. A. L. Harmer, IEEE Trans. Electron Devices ED-23, 3120 (1976).
  13. P. Felix, Thomson-CSF; private communication (April1977).
  14. T. Conklin, B. Singer, “High-Performance Pyroelectric Vidicon,” International Electron Devices Meeting, Washington, D.C. (1975).
  15. K. M. Baird, H. D. Riccius, K. J. Siemsen, Opt. Commun. 6, 92 (1972).
    [CrossRef]
  16. P. Felix, Thomson-CSF, Division Tubes Electroniques; private communication (June1976).
  17. P. Felix, G. Moiroud, S. Veron, “Recent Improvement of the Pyricon,” Fourth European Symposium on Military Infrared, Malvern (May1974).

1976 (1)

A. L. Harmer, IEEE Trans. Electron Devices ED-23, 3120 (1976).

1975 (3)

Y. Talmi, Anal. Chem. 47, 658A (1975).

K. W. Busch, N. G. Howell, G. H. Morrison, Anal. Chem. 46, 575 (1975).
[CrossRef]

C. N. Helmick, SPIE Proc. 62, 177 (1975); see also C. N. Helmick, W. H. Woodworth, Ferroelectrics 11, 309 (1976).
[CrossRef]

1974 (1)

M. J. Milano, H. L. Pardue, T. E. Cook, R. E. Santini, D. W. Margerum, J. M. T. Raycheba, Anal. Chem. 46, 374 (1974).
[CrossRef]

1972 (1)

K. M. Baird, H. D. Riccius, K. J. Siemsen, Opt. Commun. 6, 92 (1972).
[CrossRef]

Baird, K. M.

K. M. Baird, H. D. Riccius, K. J. Siemsen, Opt. Commun. 6, 92 (1972).
[CrossRef]

Busch, K. W.

K. W. Busch, N. G. Howell, G. H. Morrison, Anal. Chem. 46, 575 (1975).
[CrossRef]

Conklin, T.

T. Conklin, B. Singer, “High-Performance Pyroelectric Vidicon,” International Electron Devices Meeting, Washington, D.C. (1975).

Cook, T. E.

M. J. Milano, H. L. Pardue, T. E. Cook, R. E. Santini, D. W. Margerum, J. M. T. Raycheba, Anal. Chem. 46, 374 (1974).
[CrossRef]

Felix, P.

P. Felix, Thomson-CSF, Division Tubes Electroniques; private communication (June1976).

P. Felix, G. Moiroud, S. Veron, “Recent Improvement of the Pyricon,” Fourth European Symposium on Military Infrared, Malvern (May1974).

P. Felix, Thomson-CSF; private communication (April1977).

Harmer, A. L.

A. L. Harmer, IEEE Trans. Electron Devices ED-23, 3120 (1976).

Helmick, C. N.

C. N. Helmick, SPIE Proc. 62, 177 (1975); see also C. N. Helmick, W. H. Woodworth, Ferroelectrics 11, 309 (1976).
[CrossRef]

Howell, N. G.

K. W. Busch, N. G. Howell, G. H. Morrison, Anal. Chem. 46, 575 (1975).
[CrossRef]

Margerum, D. W.

M. J. Milano, H. L. Pardue, T. E. Cook, R. E. Santini, D. W. Margerum, J. M. T. Raycheba, Anal. Chem. 46, 374 (1974).
[CrossRef]

Milano, M. J.

M. J. Milano, H. L. Pardue, T. E. Cook, R. E. Santini, D. W. Margerum, J. M. T. Raycheba, Anal. Chem. 46, 374 (1974).
[CrossRef]

Moiroud, G.

P. Felix, G. Moiroud, S. Veron, “Recent Improvement of the Pyricon,” Fourth European Symposium on Military Infrared, Malvern (May1974).

Morrison, G. H.

K. W. Busch, N. G. Howell, G. H. Morrison, Anal. Chem. 46, 575 (1975).
[CrossRef]

Olson, G. G.

G. G. Olson, American Laboratory (February1972).

Pardue, H. L.

M. J. Milano, H. L. Pardue, T. E. Cook, R. E. Santini, D. W. Margerum, J. M. T. Raycheba, Anal. Chem. 46, 374 (1974).
[CrossRef]

Raycheba, J. M. T.

M. J. Milano, H. L. Pardue, T. E. Cook, R. E. Santini, D. W. Margerum, J. M. T. Raycheba, Anal. Chem. 46, 374 (1974).
[CrossRef]

Riccius, H. D.

K. M. Baird, H. D. Riccius, K. J. Siemsen, Opt. Commun. 6, 92 (1972).
[CrossRef]

Santini, R. E.

M. J. Milano, H. L. Pardue, T. E. Cook, R. E. Santini, D. W. Margerum, J. M. T. Raycheba, Anal. Chem. 46, 374 (1974).
[CrossRef]

Siemsen, K. J.

K. M. Baird, H. D. Riccius, K. J. Siemsen, Opt. Commun. 6, 92 (1972).
[CrossRef]

Singer, B.

T. Conklin, B. Singer, “High-Performance Pyroelectric Vidicon,” International Electron Devices Meeting, Washington, D.C. (1975).

Talmi, Y.

Y. Talmi, Anal. Chem. 47, 658A (1975).

Veron, S.

P. Felix, G. Moiroud, S. Veron, “Recent Improvement of the Pyricon,” Fourth European Symposium on Military Infrared, Malvern (May1974).

Anal. Chem. (3)

M. J. Milano, H. L. Pardue, T. E. Cook, R. E. Santini, D. W. Margerum, J. M. T. Raycheba, Anal. Chem. 46, 374 (1974).
[CrossRef]

Y. Talmi, Anal. Chem. 47, 658A (1975).

K. W. Busch, N. G. Howell, G. H. Morrison, Anal. Chem. 46, 575 (1975).
[CrossRef]

IEEE Trans. Electron Devices (1)

A. L. Harmer, IEEE Trans. Electron Devices ED-23, 3120 (1976).

Opt. Commun. (1)

K. M. Baird, H. D. Riccius, K. J. Siemsen, Opt. Commun. 6, 92 (1972).
[CrossRef]

SPIE Proc. (1)

C. N. Helmick, SPIE Proc. 62, 177 (1975); see also C. N. Helmick, W. H. Woodworth, Ferroelectrics 11, 309 (1976).
[CrossRef]

Other (11)

“Supplement to Application Note APV-6075,” Thomson-CSF, Groupment Tubes Electroniques (February1976).

“Pyricon–An Introduction to Modern Thermal Imaging Technology,” Thomson-CSF, Application Note APV-6075 (November1975).

Experiments were carried out at the Department of Chemistry, Booklyn College, SUNY, Brooklyn, N.Y. 11210, courtesy of A. Ron.

Ref. 3, p. 697A.

G. G. Olson, American Laboratory (February1972).

OMA Catalog, Princeton Applied Research Corporation, P.O. Box 2565, Princeton, N.J. 08540.

P. Felix, Thomson-CSF, Division Tubes Electroniques; private communication (June1976).

P. Felix, G. Moiroud, S. Veron, “Recent Improvement of the Pyricon,” Fourth European Symposium on Military Infrared, Malvern (May1974).

P. Felix, Thomson-CSF; private communication (April1977).

T. Conklin, B. Singer, “High-Performance Pyroelectric Vidicon,” International Electron Devices Meeting, Washington, D.C. (1975).

“Advanced Scanner and Imaging Systems for Earth Observations,” NASA Report SP-335 (December1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

Schematic diagram of the pyroelectric vidicon tube and its operation.

Fig. 2
Fig. 2

(A) Scanning pattern of the TGS target; overscanned and uniform regions. (B) On-target light–dark correction.

Fig. 3
Fig. 3

Principles of operation: pyroelectric target.

Fig. 4
Fig. 4

Pyroelectric coefficient (pyroelectricity) and dialectric constant vs temperature for TGS.14

Fig. 5
Fig. 5

Typical spectra response of pyroelectric vidicons; )1) a KRS-5 window (above 13-μm data are from Thomson-CSF) and (2) a Ge window coated for optimum transmission in the 8–14-μm range. Experimental data from Thomson-CSF. The dotted circles represent absolute spectral response values (Table I), except for the first three (below 2 μm) which are only semiquantitative (±50%) values.

Fig. 6
Fig. 6

Over-all schematic diagram of the Pyricon OMA (PARC model 1204A and 1204P) system.

Fig. 7
Fig. 7

Real time mode display and timing diagram (chopped continuous signal). In the AB accumulation mode, only frames 2–4 are displayed so that only one spectrum is displayed.

Fig. 8
Fig. 8

Real time display of a single spectral line superimposed on the current pedestal: (A) display of memory A, chopper in open position; (B) display of memory B, chopper in closed position; (C) spectrum difference processing (AB) display.

Fig. 9
Fig. 9

Automatic poling sequence.

Fig. 10
Fig. 10

Uniformity of pedestal and sensitivity across the target. (A) Pedestal display preamplifier (first stage) output). A negative ir signal is superimposed on the pedestal. (B) Pedestal display following blanking of upper and lower target regions [Fig. 2(a)] and on-target light–dark correction [Fig. 2(b)]. (C) Variation of signal sensitivity (channels 100–400); spectrum difference processing (AB) display mode.

Fig. 11
Fig. 11

Loss of resolution with time (frame and channel number); mechanically modulated (chopped) continuous ir signai. (A) Channel 75; Δt = 5 msec, width at half peak height: first frame 5 channels, second frame 7 channels. (B) Channel 150; Δt = 10 msec, width at half peak height: first frame 6–7 channels, second frame 7–8 channels. (C) Channel 350; Δt = 23 msec, width at half peak height: first frame 7 channels, second frame 8 channels.

Fig. 12
Fig. 12

Loss of resolution with time because of thermal diffusion. Multiple exposure (Polaroid film) of five consecutive TEA CO2 laser pulses.

Fig. 13
Fig. 13

Thermal lag combined with discharge lag. Rapid shuttering of a continuous ir signal through a spectrometer slit. (a) Signal amplitude vs time, a trace every 32 msec. Real time display of memory A. (b) Signal amplitude vs time. Spectrum difference processing (AB) real time display.

Fig. 14
Fig. 14

Absorption spectra of thin films of (a) polycarbonate, (b) polytoluene, and (c) polystyrene. Operation conditions:

Light source:Glow bar (800° C),
Slit:200 μm wide, 4.5 mm long,
Grating:Blazed at 2 μm, 75 g/mm,
SDP display (AB):400 accumulations in memory.
Fig. 15
Fig. 15

Improvement of SNR with accumulation.

Fig. 16
Fig. 16

Blackbody emission (A), polystyrene absorption (B), and absorbance (C) spectra. Operating conditions as in Fig. 14. First-order spectral coverage (window), 0.726 μm for channels 50–450.

Fig. 17
Fig. 17

Polyethylene absorption (I), inverse transmittance (I0/I), and absorbance (logI0/I) spectra. Operating conditions as in Fig. 14. Spectral coverage as in Fig. 16.

Fig. 18
Fig. 18

Effect of slit width on the spectral resolution of the Pyricon OMA system: (A) Slit width 50 μm (peak height 195 counts); (B) slit width 150 μm (peak height 890 counts); (C) slit width 200 μm (peak height 1080 counts), obtained at a lower display vertical expansion.

Fig. 19
Fig. 19

Second-order separation of adjacent CO2 (laser) emission rotation lines [CO2 transitions P(22) and P(24)].

Fig. 20
Fig. 20

Temperature response of a TGS target irradiated by a rapid pulse through a slit of variable width 2B (Table III). Reduced variable u = y/b, r = 4Dt/B2.

Tables (3)

Tables Icon

Table I Absolute Response of Pyricon (KRS-5 Window)–OMA System at the 2–10-μm Spectral Region

Tables Icon

Table II Effect of Pedestal Current Level on SNR

Tables Icon

Table III Effect of Time on (a Single Pulse) the Resolution and Response of the Pyricon Detector

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α = ( q K ) I p τ f C T B ( I p ) ,
θ ( t , y ) = W 4 C e B exp [ t τ ( erf y + B 2 ( D t ) 1 / 2 + erf y B 2 ( D t ) 1 / 2 ) ] ,
erf ( x ) = 2 π 0 x e u 2 du is the error function .
θ θ max = 1 2 [ erf 1 + u ( r ) 1 / 2 + erf 1 u ( r ) 1 / 2 ] ,

Metrics