Abstract

We have developed a simplified version of the side-pumped pulsed dye laser which has a spectral halfwidth of 1.25 GHz and a peak power of 10 kW at 600 nm. The basic laser consists of only four components (output mirror, dye cell, diffraction grating, and tuning mirror) and is exceptionally easy to align. Since the beam expander has been eliminated, the laser cavity can be made quite compact. Under the condition of reduced gain, the laser has been operated in a single mode.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Hänsch, Appl. Opt. 11, 895 (1972).
    [CrossRef] [PubMed]
  2. J. Lawler, W. Fitzsimmons, L. Anderson, Appl. Opt. 15, 1083 (1976).
    [CrossRef] [PubMed]
  3. S. Myers, Opt. Commun. 4, 187 (1971).
    [CrossRef]
  4. E. Stokes, F. Dunning, R. Stebbings, G. Walters, R. Rundel, Opt. Commun. 5, 267 (1972).
    [CrossRef]
  5. D. Hanna, P. Karkainen, R. Wyatt, Opt. Quantum Electron. 7, 115 (1975).
    [CrossRef]
  6. G. Klauminzer, Molectron Corp.; private communication.
  7. R. Burlamacchi, R. Coisson, R. Pratesi, D. Pucci, Appl. Opt. 16, 1553 (1977).
    [CrossRef] [PubMed]
  8. R. Wallenstein, T. Hänsch, Appl. Opt. 13, 1625 (1974).
    [CrossRef] [PubMed]
  9. A. Yariv, Introduction to Optical Electronics (Holt, Rinehart, Winston, New York, 1976).
  10. R. Wallenstein, T. Hänsch, Opt. Commun. 14, 353 (1975).
    [CrossRef]

1977

1976

1975

D. Hanna, P. Karkainen, R. Wyatt, Opt. Quantum Electron. 7, 115 (1975).
[CrossRef]

R. Wallenstein, T. Hänsch, Opt. Commun. 14, 353 (1975).
[CrossRef]

1974

1972

T. Hänsch, Appl. Opt. 11, 895 (1972).
[CrossRef] [PubMed]

E. Stokes, F. Dunning, R. Stebbings, G. Walters, R. Rundel, Opt. Commun. 5, 267 (1972).
[CrossRef]

1971

S. Myers, Opt. Commun. 4, 187 (1971).
[CrossRef]

Anderson, L.

Burlamacchi, R.

Coisson, R.

Dunning, F.

E. Stokes, F. Dunning, R. Stebbings, G. Walters, R. Rundel, Opt. Commun. 5, 267 (1972).
[CrossRef]

Fitzsimmons, W.

Hanna, D.

D. Hanna, P. Karkainen, R. Wyatt, Opt. Quantum Electron. 7, 115 (1975).
[CrossRef]

Hänsch, T.

Karkainen, P.

D. Hanna, P. Karkainen, R. Wyatt, Opt. Quantum Electron. 7, 115 (1975).
[CrossRef]

Klauminzer, G.

G. Klauminzer, Molectron Corp.; private communication.

Lawler, J.

Myers, S.

S. Myers, Opt. Commun. 4, 187 (1971).
[CrossRef]

Pratesi, R.

Pucci, D.

Rundel, R.

E. Stokes, F. Dunning, R. Stebbings, G. Walters, R. Rundel, Opt. Commun. 5, 267 (1972).
[CrossRef]

Stebbings, R.

E. Stokes, F. Dunning, R. Stebbings, G. Walters, R. Rundel, Opt. Commun. 5, 267 (1972).
[CrossRef]

Stokes, E.

E. Stokes, F. Dunning, R. Stebbings, G. Walters, R. Rundel, Opt. Commun. 5, 267 (1972).
[CrossRef]

Wallenstein, R.

R. Wallenstein, T. Hänsch, Opt. Commun. 14, 353 (1975).
[CrossRef]

R. Wallenstein, T. Hänsch, Appl. Opt. 13, 1625 (1974).
[CrossRef] [PubMed]

Walters, G.

E. Stokes, F. Dunning, R. Stebbings, G. Walters, R. Rundel, Opt. Commun. 5, 267 (1972).
[CrossRef]

Wyatt, R.

D. Hanna, P. Karkainen, R. Wyatt, Opt. Quantum Electron. 7, 115 (1975).
[CrossRef]

Yariv, A.

A. Yariv, Introduction to Optical Electronics (Holt, Rinehart, Winston, New York, 1976).

Appl. Opt.

Opt. Commun.

R. Wallenstein, T. Hänsch, Opt. Commun. 14, 353 (1975).
[CrossRef]

S. Myers, Opt. Commun. 4, 187 (1971).
[CrossRef]

E. Stokes, F. Dunning, R. Stebbings, G. Walters, R. Rundel, Opt. Commun. 5, 267 (1972).
[CrossRef]

Opt. Quantum Electron.

D. Hanna, P. Karkainen, R. Wyatt, Opt. Quantum Electron. 7, 115 (1975).
[CrossRef]

Other

G. Klauminzer, Molectron Corp.; private communication.

A. Yariv, Introduction to Optical Electronics (Holt, Rinehart, Winston, New York, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of basic grazing incidence dye laser.

Fig. 2
Fig. 2

Grating and tuning mirror arrangement illustrating angles used in the analysis.

Fig. 3
Fig. 3

Spectral analysis of laser output using scanning Fabry-Perot etalon.

Fig. 4
Fig. 4

The transmission through a fixed Fabry-Perot etalon (1.15-cm−1 free spectral range) as the laser is swept over a 60-cm−1 interval. The sole scanning element is the tuning mirror which in this case is rotated about 3 mrad. The sweep time is 10 min.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

( Δ λ ) / λ = λ / ( π l    sin θ ) ,
m λ = x ( sin θ 1 + sin θ 2 ) ,
m λ = x ( sin θ 3 + sin θ 4 ) ,
θ 2 + θ 3 = 2 ϕ ,
λ laser = ( x / m ) ( sin θ 0 + sin ϕ ) .
Δ λ = [ ( Δ λ input   angle ) 2 + ( Δ λ exit   angle ) 2 ] 1 / 2 = [ ( λ θ 1 Δ θ 1 ) 2 + ( λ θ 4 Δ θ 4 ) 2 ] 1 / 2 | θ 1 = θ 4 = θ 0 ,
λ θ 1 = ( λ    cos θ 1 sin θ 3 + sin θ 4 ) ( cos θ 3 cos θ 2 + cos θ 3 ) .
λ θ 4 = ( λ    cos θ 4 sin θ 1 + sin θ 2 ) ( cos θ 2 cos θ 2 + cos θ 3 ) .
Δ λ = λ cos θ 0 2 ( sin θ 0 + sin ϕ ) [ ( l cos θ 0 2 d 2 ) 2 + ( w d 2 ) 2 ] 1 / 2 .
( l    cos θ 0 ) / ( 2 d 2 ) = Δ θ diff λ / ( π w ) .
Δ λ d 2 > L R = λ 2 π l ( sin θ 0 + sin ϕ ) [ ( d 2 L R ) 2 + 1 ] 1 / 2 .
Δ λ d 2 < L R = λ 2 π l ( sin θ 0 + sin ϕ ) ( 2 L R d 2 ) .
Δ λ λ 2 λ π l ( sin θ 0 + sin ϕ )

Metrics