Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Deirmendjian, Appl. Opt. 3, 187 (1964).
    [CrossRef]
  2. C. Junge, J. Meteorol. 12, 13 (1955).
    [CrossRef]
  3. T. S. Chu, D. C. Hogg, Bell Syst. Tech. J. 47, 723 (1968).

1968 (1)

T. S. Chu, D. C. Hogg, Bell Syst. Tech. J. 47, 723 (1968).

1964 (1)

1955 (1)

C. Junge, J. Meteorol. 12, 13 (1955).
[CrossRef]

Chu, T. S.

T. S. Chu, D. C. Hogg, Bell Syst. Tech. J. 47, 723 (1968).

Deirmendjian, D.

Hogg, D. C.

T. S. Chu, D. C. Hogg, Bell Syst. Tech. J. 47, 723 (1968).

Junge, C.

C. Junge, J. Meteorol. 12, 13 (1955).
[CrossRef]

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

T. S. Chu, D. C. Hogg, Bell Syst. Tech. J. 47, 723 (1968).

J. Meteorol. (1)

C. Junge, J. Meteorol. 12, 13 (1955).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Ratio of scattering to absorption coefficient for 3.5 μm and 10.6 μm as a function of time.

Fig. 2
Fig. 2

Calculated aerosol extinction coefficients βae for 10.6 μm vs those for 3.5 μm.

Fig. 3
Fig. 3

Increased extinction coefficients (dashed lines) for 10.6 μm vs those for 3.5 μm for increased particle radii as indicated and compared with the regression analyses in Fig. 2.

Tables (1)

Tables Icon

Table I Increase in Extinction Coefficient Δβae above βae for 3.5 μm and 10.6 μm vs Maximum Particle Radius r2 where r2 > r1 (Maximum Observable Radius) and the Liquid Water Content W as Determined by r1

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

β as ae = r 0 r 1 π r 2 n ( r ) K s e ( 2 π r / λ , η ) d r ,
β a a = β a e β a s .
K s e ( 2 π r / λ , η )
n ( r ) = C r p ,
β a e ( λ ) = β a e ( λ ) + Δ β a e ( λ )  ,
Δ β a e ( λ ) = r 1 r 2 π r 2 n ( r ) K e ( 2 π r / λ , η ) d r .
W = ρ r 0 r 1 4 / 3 π r 3 n ( r ) d r 4 π C ρ r 1 4 p / 3 ( 4 p ) ,
Δ β a e ( λ ) = 0.75 ( 4 p ) ( W / ρ ) r 1 p 4 ( λ / 2 π ) 3 p × X 1 X 2 X 2 p K e ( X , η ) d X ,

Metrics