Abstract

In optical video recording the information is usually read from the disk by a scanning laser beam. We apply the theory of imaging in partially coherent light to this, situation. We assume that the disk is a thin phase object, and that the information pattern consists of tracks of a width that is small compared to the diameter of the reading spot. We obtain simple expressions for the amplitudes of the signals generated by the playback system. Also intermodulation products and cross talk between the tracks are considered.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Compaan, P. Kramer, Philips Tech. Rev. 33, 178 (1973),see also other papers in the same issue of Philips Tech. Rev., and G. Broussaud, E. Spitz, Proc. SID 38, 123 (1974);G. W. Hrbek, J. Soc. Motion Pict. Telev. Eng. 83, 580 (1974).For holographic video disk system see Y. Tsunoda, K. Tatsuno, K. Kataoka, Y. Takeda, Appl. Opt. 15, 1398 (1976).
    [CrossRef] [PubMed]
  2. G. Bouwhuis, J. J. M. Braat, Appl. Opt. 17, 1993 (1978).
    [CrossRef] [PubMed]
  3. M. de Haan, C. H. F. Velzel, Nonlinear frequency mixing in optical videorecording, Philips Res. Rep. 32, 341 (1977).
  4. J. J. M. Braat, G. Bouwhuis, Appl. Opt. 17, 2013 (1978).
    [CrossRef] [PubMed]
  5. B. A. J. Jacobs, Appl. Opt. 17, 2001 (1978).
    [CrossRef] [PubMed]
  6. J. P. J. Heemskerk, Appl. Opt. 17, 2007 (1978).
    [CrossRef] [PubMed]
  7. H. H. Hopkins, Proc. R. Soc. London Ser. A 217, 425 (1953).
  8. H. H. Hopkins, J. J. M. Braat, unpublished reports.
  9. M. Abramowitz, I. Stegun, Eds., Handbook of Mathematical Functions (National Bureau of Standards, Washington, D.C., 1968).
  10. A. Maréchal, J. Opt. Soc. Am. 37, 403 (1947).
    [CrossRef] [PubMed]
  11. H. A. Lorentz, Proc. K. Akad. Wet. Amsterdam 8, 401 (1905).

1978 (4)

1977 (1)

M. de Haan, C. H. F. Velzel, Nonlinear frequency mixing in optical videorecording, Philips Res. Rep. 32, 341 (1977).

1973 (1)

K. Compaan, P. Kramer, Philips Tech. Rev. 33, 178 (1973),see also other papers in the same issue of Philips Tech. Rev., and G. Broussaud, E. Spitz, Proc. SID 38, 123 (1974);G. W. Hrbek, J. Soc. Motion Pict. Telev. Eng. 83, 580 (1974).For holographic video disk system see Y. Tsunoda, K. Tatsuno, K. Kataoka, Y. Takeda, Appl. Opt. 15, 1398 (1976).
[CrossRef] [PubMed]

1953 (1)

H. H. Hopkins, Proc. R. Soc. London Ser. A 217, 425 (1953).

1947 (1)

1905 (1)

H. A. Lorentz, Proc. K. Akad. Wet. Amsterdam 8, 401 (1905).

Bouwhuis, G.

Braat, J. J. M.

Compaan, K.

K. Compaan, P. Kramer, Philips Tech. Rev. 33, 178 (1973),see also other papers in the same issue of Philips Tech. Rev., and G. Broussaud, E. Spitz, Proc. SID 38, 123 (1974);G. W. Hrbek, J. Soc. Motion Pict. Telev. Eng. 83, 580 (1974).For holographic video disk system see Y. Tsunoda, K. Tatsuno, K. Kataoka, Y. Takeda, Appl. Opt. 15, 1398 (1976).
[CrossRef] [PubMed]

de Haan, M.

M. de Haan, C. H. F. Velzel, Nonlinear frequency mixing in optical videorecording, Philips Res. Rep. 32, 341 (1977).

Heemskerk, J. P. J.

Hopkins, H. H.

H. H. Hopkins, Proc. R. Soc. London Ser. A 217, 425 (1953).

H. H. Hopkins, J. J. M. Braat, unpublished reports.

Jacobs, B. A. J.

Kramer, P.

K. Compaan, P. Kramer, Philips Tech. Rev. 33, 178 (1973),see also other papers in the same issue of Philips Tech. Rev., and G. Broussaud, E. Spitz, Proc. SID 38, 123 (1974);G. W. Hrbek, J. Soc. Motion Pict. Telev. Eng. 83, 580 (1974).For holographic video disk system see Y. Tsunoda, K. Tatsuno, K. Kataoka, Y. Takeda, Appl. Opt. 15, 1398 (1976).
[CrossRef] [PubMed]

Lorentz, H. A.

H. A. Lorentz, Proc. K. Akad. Wet. Amsterdam 8, 401 (1905).

Maréchal, A.

Velzel, C. H. F.

M. de Haan, C. H. F. Velzel, Nonlinear frequency mixing in optical videorecording, Philips Res. Rep. 32, 341 (1977).

Appl. Opt. (4)

J. Opt. Soc. Am. (1)

Nonlinear frequency mixing in optical videorecording, Philips Res. Rep. (1)

M. de Haan, C. H. F. Velzel, Nonlinear frequency mixing in optical videorecording, Philips Res. Rep. 32, 341 (1977).

Philips Tech. Rev. (1)

K. Compaan, P. Kramer, Philips Tech. Rev. 33, 178 (1973),see also other papers in the same issue of Philips Tech. Rev., and G. Broussaud, E. Spitz, Proc. SID 38, 123 (1974);G. W. Hrbek, J. Soc. Motion Pict. Telev. Eng. 83, 580 (1974).For holographic video disk system see Y. Tsunoda, K. Tatsuno, K. Kataoka, Y. Takeda, Appl. Opt. 15, 1398 (1976).
[CrossRef] [PubMed]

Proc. K. Akad. Wet. Amsterdam (1)

H. A. Lorentz, Proc. K. Akad. Wet. Amsterdam 8, 401 (1905).

Proc. R. Soc. London Ser. A (1)

H. H. Hopkins, Proc. R. Soc. London Ser. A 217, 425 (1953).

Other (2)

H. H. Hopkins, J. J. M. Braat, unpublished reports.

M. Abramowitz, I. Stegun, Eds., Handbook of Mathematical Functions (National Bureau of Standards, Washington, D.C., 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Diagram of the optics of the VLP player. L is the laser, A an auxiliary lens, B a beam splitter, O the objective lens, D the detector. The rotatable mirror M serves for radial tracking.2 The laser beam is focused on the rear side of the disk, which is covered with an aluminum layer. This side contains the information pattern.

Fig. 2
Fig. 2

Structure of the information pattern on the disk. In (a) it is seen that the tracks run from a radius Ri to a radius Ru. In practice Ri = 60 mm and Ru = 145 mm. In (b) a small part of two neighboring tracks can be seen. The distance q between the tracks is about 1.5 μm; γ is the track width.

Fig. 3
Fig. 3

Contour plot of the reading beam in focus, up to the first dark ring, for a uniformly filled circular pupil, with a track of width γ at a distance υ0 from the optical axis.

Fig. 4
Fig. 4

Amplitude of the first harmonic of the detector signal for a track of rectangular pits as a function of the spatial frequency x. The cutoff frequency x = 2 corresponds to 1260 periods/mm. The amplitude is given for the focal settings Δz = 0 μm, ±2 μm, ±4 μm. This amplitude is proportional to the linear MTF h(x).

Fig. 5
Fig. 5

The arrangement of the three beams of the tracking sensor. The middle beam is the rf reading beam, the other two serve for tracking. A track of width γ and distance υ0 from the origin is also drawn.

Fig. 6
Fig. 6

The radial tracking signal as a function of the distance υ0 of the track from the origin for the focal settings Δz = 0 μm, ±2 μm, ±4 μm.

Fig. 7
Fig. 7

Contour plot of the MTF h2(xj,xk) for a uniform square pupil. The function is zero beyond the outermost contour. The value of the function inside this contour is shown with the curves.

Fig. 8
Fig. 8

Frequency plot of the rf signal and intermodulation products. Part (a) shows the luminance carrier at ν0 and the first color sidebands at ν0 ± νc, together with one of the second color sidebands (ν0 − 2 νc), the sound band (νs), and baseband intermodulation at νc. Part (b) shows the intermodulation products of luminance and sound, and (c) the intermodulation products of the sound signal with the first color sidebands. In all three plots 2s is the cutoff frequency, taken here at 14.4 MHz.

Fig. 9
Fig. 9

The cross talk ratio R01 as a function of the distance q between tracks, for five tracks and a uniform square pupil, and average signals Sn = −½ and −1/3 on all the tracks.

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

u = ( N / λ ) X , υ = ( N / λ ) Y ,
x = ( sin ξ ) / N , y = ( sin η ) / N ,
A ( u , υ ) = x 2 + y 2 < 1 f ( x , y ) exp [ 2 π i ( u x + υ y ) ] dxdy .
a ( x , y ) = A ( u , υ ) R ( u , υ ) exp [ 2 π i ( u x + υ y ) ] dud υ .
i ( t ) = g ( x , y ) | a ( x , y ) | 2 dxdy ,
i ( t ) = i 0 + i 1 ( t ) + i 2 ( t ) ,
i 1 ( t ) = 2 Re [ | A ( u , υ 0 ) | 2 S ( u s t ) du ] ,
i 2 ( t ) = B ( u u , 0 ) A ( u , υ 0 ) A * ( u , υ 0 ) S ( u s t ) S * ( u s t ) du du ,
S ( u ) = υ 0 γ / 2 υ 0 + γ / 2 [ R ( u , υ ) 1 ] du ,
B ( u , υ ) = g ( x , y ) exp [ 2 π i ( x u + y υ ) ] dxdy .
i l ( t ) = 2 Re [ ( 1 + S 0 * ) | A ( u , υ 0 ) | 2 S ( u s t ) du ] .
S k l = S 0 sinc ( π k β ) ( 1 ) l J 1 ( km ) ,
S 0 = β γ [ exp ( i φ ) 1 ] ,
h ( ν s ) = | A ( u , υ 0 ) | 2 exp ( 2 π i u ν / s ) du .
s = [ ( 2 π R ) / T ] ( N / λ ) ,
m = 1 2 m h ( ν s s ) / h ( ν 0 s ) ,
S ( u ) = k S k exp ( 2 π i u x k ) ,
i j k = 2 i 0 Re { S j S k * h 2 ( x j , x k ) exp [ 2 π i ( ν j ν k ) t ] } .
h 2 ( x j , x k ) = 1 1 4 { | x j x k | + | x j | + | x k | } for | x j | < 2 , | x k | < 2 , | x j x k | < 2 ,
i ( ω c ) = ν c s S 10 S 11 cos ω t ,
i 1 ( t ) = n = N N 2 Re [ | A ( u , υ n ) | 2 S n ( u s t ) du ] ,
i 2 ( t ) = n = N N m = N N B ( u u , υ n υ m ) × A ( u , υ n ) A * ( u , υ m ) S n ( u s t ) S m * ( u s t ) du du ,
i ln ( t ) = 2 Re [ | A ( u , υ n ) | 2 S n ( u s t ) du + m = N N S 0 m * × B ( u u , υ n υ m ) A ( u , υ n ) A * × ( u , υ m ) S n ( u s t ) dudu ] ,
a ( x , y ) = f ( x , y ) + υ 0 γ / 2 υ 0 + γ / 2 ( u , υ ) [ R ( u s t , υ ) 1 ] exp [ 2 π i ( x u + y υ ) ] dud υ .
a ( x , y ) = f ( x , y ) + A ( u , υ 0 ) S ( u s t ) exp [ 2 π i ( u x + y υ 0 ) ] du ,
i ( t ) = i 0 + i 1 ( t ) + i 2 ( t )
i 0 = g ( x , y ) | f ( x , y ) | 2 dxdy ,
i 1 ( t ) = 2 Re ( g ( x , y ) f * ( x , y ) { A ( u , υ 0 ) S ( u s t ) × exp [ 2 π i ( u x + υ 0 y ) ] du } dxdy ) ,
i 2 ( t ) = g ( x , y ) [ A ( u , υ 0 ) S ( u s t ) exp ( 2 π i u x ) du ] × [ A * ( u , υ 0 ) S * ( u s t ) exp ( 2 π i u x du ] dxdy .
i 0 h 2 ( x j , x k ) = B ( u u , 0 ) A ( u , υ 0 ) A * ( u , υ 0 ) × exp [ 2 π i ( u x j u x k ) ] du du .
i 0 h 2 ( x j , x k ) = g ( x , y ) a ( x j x , υ 0 ) × a * ( x k x , υ 0 ) dxdy ,
a ( x , υ 0 ) = A ( u , υ 0 ) exp ( 2 π i u x ) du .
a ( x , υ 0 ) = y = ( 1 x 2 ) 1 / 2 y = ( 1 x 2 ) 1 / 2 f ( x , y ) exp ( 2 π i y υ 0 ) dy

Metrics