Abstract

An As40Se50−xSxGe10 film strip loaded waveguide, formed in the graded-index LiNbO3 planar waveguide, has been demonstrated. Analytical results show that the optical field confinement in the waveguide loaded by the high refractive index film becomes large near the film cutoff thickness for the fundamental mode. Photostructural effect of the chalcogenide glass overcomes difficulty in precisely controlling film thickness. A 3-D waveguide has been achieved by loading As40Se10S40Ge10 film 10 μm wide on a Ti diffused LiNbO3 planar waveguide. Optical confinement in the waveguide has been improved intensively with the aid of the photostructural effect of the film.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. P. Kaminow, IEEE Trans. Microwave Theory Tech. MTT-23, 57 (1975).
    [CrossRef]
  2. M. Furuta, H. Noda, A. Ihaya, Appl. Opt. 13, 322 (1974).
    [CrossRef] [PubMed]
  3. V. Ramaswamy, Bell. Syst. Tech. J. 53, 697 (1974).
  4. N. Uchida, Appl. Opt. 15, 179 (1976).
    [CrossRef] [PubMed]
  5. G. B. Hocker, IEEE. J. Quantum Electron. QE-12, 232 (1976).
    [CrossRef]
  6. T. Igo, Y. Toyoshima, J. Non-Cryst. Solids 11, 304 (1973).
    [CrossRef]
  7. S. Zembutsu, Y. Toyoshima, T. Igo, H. Nagai, Appl. Opt. 14, 3073 (1975).
    [CrossRef] [PubMed]
  8. E. M. Conwell, Appl. Phys. Lett. 23, 328 (1973).
    [CrossRef]
  9. E. A. J. Marcatili, Bell. Syst. Tech. J. 48, 2071 (1969).
  10. D. F. Nelson, R. M. Mikulyak, J. Appl. Phys. 45, 3688 (1974).
    [CrossRef]
  11. S. Zembutsu, S. Fukunishi, O. Mikami, J. Noda, IOOC, Tokyo, Technical Digest, 129 (1977).
  12. N. Uchida, O. Mikami, S. Uehara, J. Noda, Appl. Opt. 15, 455 (1976).
    [CrossRef] [PubMed]
  13. J. Noda, N. Uchida, S. Saito, T. Saku, M. Minakata, Appl. Phys. Lett. 27, 19 (1975).
    [CrossRef]

1976

1975

J. Noda, N. Uchida, S. Saito, T. Saku, M. Minakata, Appl. Phys. Lett. 27, 19 (1975).
[CrossRef]

S. Zembutsu, Y. Toyoshima, T. Igo, H. Nagai, Appl. Opt. 14, 3073 (1975).
[CrossRef] [PubMed]

I. P. Kaminow, IEEE Trans. Microwave Theory Tech. MTT-23, 57 (1975).
[CrossRef]

1974

M. Furuta, H. Noda, A. Ihaya, Appl. Opt. 13, 322 (1974).
[CrossRef] [PubMed]

V. Ramaswamy, Bell. Syst. Tech. J. 53, 697 (1974).

D. F. Nelson, R. M. Mikulyak, J. Appl. Phys. 45, 3688 (1974).
[CrossRef]

1973

T. Igo, Y. Toyoshima, J. Non-Cryst. Solids 11, 304 (1973).
[CrossRef]

E. M. Conwell, Appl. Phys. Lett. 23, 328 (1973).
[CrossRef]

1969

E. A. J. Marcatili, Bell. Syst. Tech. J. 48, 2071 (1969).

Conwell, E. M.

E. M. Conwell, Appl. Phys. Lett. 23, 328 (1973).
[CrossRef]

Fukunishi, S.

S. Zembutsu, S. Fukunishi, O. Mikami, J. Noda, IOOC, Tokyo, Technical Digest, 129 (1977).

Furuta, M.

Hocker, G. B.

G. B. Hocker, IEEE. J. Quantum Electron. QE-12, 232 (1976).
[CrossRef]

Igo, T.

Ihaya, A.

Kaminow, I. P.

I. P. Kaminow, IEEE Trans. Microwave Theory Tech. MTT-23, 57 (1975).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili, Bell. Syst. Tech. J. 48, 2071 (1969).

Mikami, O.

N. Uchida, O. Mikami, S. Uehara, J. Noda, Appl. Opt. 15, 455 (1976).
[CrossRef] [PubMed]

S. Zembutsu, S. Fukunishi, O. Mikami, J. Noda, IOOC, Tokyo, Technical Digest, 129 (1977).

Mikulyak, R. M.

D. F. Nelson, R. M. Mikulyak, J. Appl. Phys. 45, 3688 (1974).
[CrossRef]

Minakata, M.

J. Noda, N. Uchida, S. Saito, T. Saku, M. Minakata, Appl. Phys. Lett. 27, 19 (1975).
[CrossRef]

Nagai, H.

Nelson, D. F.

D. F. Nelson, R. M. Mikulyak, J. Appl. Phys. 45, 3688 (1974).
[CrossRef]

Noda, H.

Noda, J.

N. Uchida, O. Mikami, S. Uehara, J. Noda, Appl. Opt. 15, 455 (1976).
[CrossRef] [PubMed]

J. Noda, N. Uchida, S. Saito, T. Saku, M. Minakata, Appl. Phys. Lett. 27, 19 (1975).
[CrossRef]

S. Zembutsu, S. Fukunishi, O. Mikami, J. Noda, IOOC, Tokyo, Technical Digest, 129 (1977).

Ramaswamy, V.

V. Ramaswamy, Bell. Syst. Tech. J. 53, 697 (1974).

Saito, S.

J. Noda, N. Uchida, S. Saito, T. Saku, M. Minakata, Appl. Phys. Lett. 27, 19 (1975).
[CrossRef]

Saku, T.

J. Noda, N. Uchida, S. Saito, T. Saku, M. Minakata, Appl. Phys. Lett. 27, 19 (1975).
[CrossRef]

Toyoshima, Y.

Uchida, N.

Uehara, S.

Zembutsu, S.

S. Zembutsu, Y. Toyoshima, T. Igo, H. Nagai, Appl. Opt. 14, 3073 (1975).
[CrossRef] [PubMed]

S. Zembutsu, S. Fukunishi, O. Mikami, J. Noda, IOOC, Tokyo, Technical Digest, 129 (1977).

Appl. Opt.

Appl. Phys. Lett.

J. Noda, N. Uchida, S. Saito, T. Saku, M. Minakata, Appl. Phys. Lett. 27, 19 (1975).
[CrossRef]

E. M. Conwell, Appl. Phys. Lett. 23, 328 (1973).
[CrossRef]

Bell. Syst. Tech. J.

E. A. J. Marcatili, Bell. Syst. Tech. J. 48, 2071 (1969).

V. Ramaswamy, Bell. Syst. Tech. J. 53, 697 (1974).

IEEE Trans. Microwave Theory Tech.

I. P. Kaminow, IEEE Trans. Microwave Theory Tech. MTT-23, 57 (1975).
[CrossRef]

IEEE. J. Quantum Electron.

G. B. Hocker, IEEE. J. Quantum Electron. QE-12, 232 (1976).
[CrossRef]

J. Appl. Phys.

D. F. Nelson, R. M. Mikulyak, J. Appl. Phys. 45, 3688 (1974).
[CrossRef]

J. Non-Cryst. Solids

T. Igo, Y. Toyoshima, J. Non-Cryst. Solids 11, 304 (1973).
[CrossRef]

Other

S. Zembutsu, S. Fukunishi, O. Mikami, J. Noda, IOOC, Tokyo, Technical Digest, 129 (1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Configuration of an optical 3-D waveguide loaded by high index film on an exponential planar waveguide.

Fig. 2
Fig. 2

Relation between effective index change Δneff and strip film thickness t for nf = 2.296, d = 5 μm, and λ = 1.06 μm. Solid line curves are for the TM0 mode (ne = 2.156), and the dotted line curves for the TE0 mode (n0 = 2.232), taking Δn as a parameter.

Fig. 3
Fig. 3

Dependences of effective index change Δneff on (a) diffusion d and (b) maximum index increment of the graded index waveguide An, for the TM0 mode, taking strip film thickness t as a parameter. ne = 2.156, nf = 2.296, λ = 1.06 μm, Δn = 0.005 in (a), and d = 5 μm in (b).

Fig. 4
Fig. 4

Dependences of effective index change Δneff on waveguide thickness d in (a) and index increment Δn in (b) for the E oo x mode in a step index four layer waveguide. Parameters are the same as in Figs. 5(a) and 5(b).

Fig. 5
Fig. 5

Variation of the E oo x mode field distribution along the x direction at y = 0, yielded by strip film loading with thickness t as a parameter. ne = 2.156, Δn = 0.005, d = 5 μm, nf = 2.296, and λ = 1.06μm.

Fig. 6
Fig. 6

Optical energy distribution for the E oo x mode accumulated in the waveguide along the x direction. Parameters are the same as in Fig. 5.

Fig. 7
Fig. 7

Optical energy distribution for the E oo x mode along the y direction confined beneath the 10-μm strip film. The graph shows only one half of the distributions.

Fig. 8
Fig. 8

Relation between effective index change Δneff for the E oo x mode and strip film index increment Δnf, taking film thickness t as a parameter. The initial film index nf is 2.296. ne = 2.156, Δn = 0.005, d = 5 μm, and λ = 1.06μm.

Fig. 9
Fig. 9

Structure of a strip-loaded waveguide used in the experiment.

Fig. 10
Fig. 10

Nearfield patterns for the E oo x mode excited in the TiO2 diffused planar waveguide beneath the chalcogenide glass strip film (a) before and (b) after Ar laser irradiation for 30 min. A YAG laser (1.064 μm) was fed into the 10-μm wide, 8-mm long strip-loaded waveguide with the single mode fiber.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

n ( x ) = n a < x < t = n f t < x < 0 = n s + Δ n exp ( x / d ) 0 < x < ,
J ν 1 [ g ( 0 ) ] J ν + 1 [ g ( 0 ) ] J ν [ g ( 0 ) ] = η 2 ( n f 2 n 1 2 ) 1 / 2 ( 2 n s Δ n ) 1 / 2 ξ S tan ( b 1 t ) 1 + ξ S tan ( b 1 t ) ,
g ( x ) = 2 dk ( 2 n s Δ n ) 1 / 2 exp ( x / d ) ,
ν = 2 dk ( n 1 2 n s 2 ) 1 / 2 ,
b 1 = k ( n f 2 n 1 2 ) 1 / 2 ,
S = ( n 1 2 n a 2 ) 1 / 2 / ( n f 2 n 1 2 ) 1 / 2 ,
η = { 1 ( n s + Δ n ) 2 , ξ { 1 for TE p modes n f 2 / n a 2 for TM p modes .
Δ n eff = n 0 ( n o 2 n 1 I 2 + n 1 II 2 ) 1 / 2 ,
n 0 = n s + Δ n
b 2 w = tan 1 ( ζ γ s / b 2 ) + q π / 2 ,
b 2 = k ( n 0 2 n 2 2 ) 1 / 2 ,
γ s = k ( n 2 2 n eff 2 ) 1 / 2 ,
ζ = { ( n 0 / n eff ) 2 for TM q modes 1 for TE q modes .
n x = ( n 1 2 n z 2 ) 1 / 2 ,
n y = ( n 2 2 n z 2 ) 1 / 2 ,
n z = ( n o 2 n x 2 n y 2 ) 1 / 2 .
E pq = C P 1 exp [ γ a ( x + t ) ] cos ( b 2 y β ) cos ( b 2 w + β ) x t w y w = C P 2 cos ( b 1 x + α ) cos ( b 1 t α ) cos ( b 2 y β ) cos ( b 2 w + β ) t x 0 w y w = C P 3 cos α cos ( b 1 t α ) J ν [ g ( x ) ] J ν [ g ( 0 ) ] cos ( b 2 y β ) cos ( b 2 w + β ) 0 x w y w = C P 4 cos α cos ( b 1 t α ) J ν [ g ( x ) ] J ν [ g ( 0 ) ] ( 1 ) q exp [ γ s ( y + w ) ] 0 x y w = C P 4 cos α cos ( b 1 t α ) J ν [ g ( x ) ] J ν [ g ( 0 ) ] exp [ γ s ( y w ) ] 0 x w y ,
α = b 1 t tan 1 ( ξ γ a / b 1 ) ,
β = q π / 2 ,
γ a = k ( n 1 2 n a 2 ) 1 / 2 ,
P 1 = { 1 / n a 2 1 / n o 2 , P 2 = { 1 / n f 2 1 / n o 2 , P 3 = { 1 / n ( x ) 2 1 / n o 2 , P 4 = { 1 / n ( x ) 2 E pq y modes 1 / n eff 2 , E pq x modes .

Metrics