Abstract

The widespread use of laser calorimetry for small absorption coefficient measurements implies that the procedure has reached a certain maturity. With several wavelengths available with significant power levels from different lasers, calorimetry can be considered as an extension of spectroscopy. In this sense, it becomes desirable to automate the calorimetric measurements. We describe the automated calorimeter built at Honeywell. Measurements can be made on bulk samples and on thin films deposited on substrates. Details of the experiment and computer control approach are given. This automated calorimeter has given us the capability to examine large numbers of samples and to determine the effects of various processing steps on bulk absorption.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Bernal G., Appl. Opt. 14, 314 (1975).
    [CrossRef] [PubMed]
  2. F. Horrigan, C. Klein, R. Rudko, D. Wilson, Microwaves 8, 68 (1969).
  3. B. Bendow, A. Horkvik, H. Lipson, L. Skolnik, Air Force Cambridge Research Laboratories Report AFCRL-72-0407 (AFCRL, Bedford, Mass., 1972).
  4. J. S. Loomis, “Development of Optical Coatings for High-Intensity Laser Applications,” AFWL-TR-74-117, contract F29601-71-C-0023 (February1975).
  5. D. A. Pinnow, T. C. Rich, Appl. Opt. 12, 984 (1973).
    [CrossRef] [PubMed]
  6. T. J. Magee, N. M. Johnson, M. Lehmann, J. Peng, J. Hannigan, Rev. Sci. Instrum. 47, 301 (1976).
    [CrossRef]
  7. M. Hass, J. W. Davisson, H. B. Rosenstock, J. Babiskin, Appl. Opt. 14, 1128 (1975).
    [CrossRef] [PubMed]
  8. D. C. Johnson, Appl. Opt. 13, 2192 (1973).
    [CrossRef]
  9. M. Hass, J. W. Davisson, P. H. Klein, L. L. Boyer, J. Appl. Phys. 49, 3959 (1974).
    [CrossRef]
  10. A. Hordvik, Appl. Opt. 16, 2827 (1977).
    [CrossRef] [PubMed]
  11. R. Weil, J. Appl. Phys. 41, 3012 (1970).
    [CrossRef]
  12. H. B. Rosenstock, D. A. Gregory, J. A. Harrington, Appl. Opt. 15, 2075 (1976).
    [CrossRef] [PubMed]
  13. H. B. Rosenstock, M. Hass, D. A. Gregory, J. A. Harrington, Appl. Opt. 16, 2837 (1977).
    [CrossRef] [PubMed]
  14. C. B. Willingham, D. Bua, T. Varitimes, M. Schapira, H. Statz, F. A. Horrigan, “Laser Calorimetry of Infrared Optical Thin Films,” in Proceedings of the Fifth Annual Conference on Infrared Laser Window Materials, Las Vegas (December 1975).
  15. R. C. Weast, Ed., Handbook of Chemistry and Physics (CRC Press, Cleveland, 1974).
  16. M. Sparks, A. C. Show, J. Appl. Phys. 45, 1510 (1974).
    [CrossRef]
  17. Nat. Bur. Standards (U.S.) Monogr. 25, Sec. 1, 7 (1961).
  18. Nat. Bur. Stand. Circ. 539, 6, 20 (1956).
  19. B. L. Evans, Proc. R. Soc. London Ser. A: 289, 275 (1966).
    [CrossRef]
  20. T. N. E. Greville, Ed., Theory and Applications of Spline Functions (Academic, New York, 1969).
  21. E. Segre, Nuclei and Particles (Benjamin, New York, 1965), p. 170.

1977

1976

H. B. Rosenstock, D. A. Gregory, J. A. Harrington, Appl. Opt. 15, 2075 (1976).
[CrossRef] [PubMed]

T. J. Magee, N. M. Johnson, M. Lehmann, J. Peng, J. Hannigan, Rev. Sci. Instrum. 47, 301 (1976).
[CrossRef]

1975

1974

M. Hass, J. W. Davisson, P. H. Klein, L. L. Boyer, J. Appl. Phys. 49, 3959 (1974).
[CrossRef]

M. Sparks, A. C. Show, J. Appl. Phys. 45, 1510 (1974).
[CrossRef]

1973

1970

R. Weil, J. Appl. Phys. 41, 3012 (1970).
[CrossRef]

1969

F. Horrigan, C. Klein, R. Rudko, D. Wilson, Microwaves 8, 68 (1969).

1966

B. L. Evans, Proc. R. Soc. London Ser. A: 289, 275 (1966).
[CrossRef]

1961

Nat. Bur. Standards (U.S.) Monogr. 25, Sec. 1, 7 (1961).

1956

Nat. Bur. Stand. Circ. 539, 6, 20 (1956).

Babiskin, J.

Bendow, B.

B. Bendow, A. Horkvik, H. Lipson, L. Skolnik, Air Force Cambridge Research Laboratories Report AFCRL-72-0407 (AFCRL, Bedford, Mass., 1972).

Bernal G., E.

Boyer, L. L.

M. Hass, J. W. Davisson, P. H. Klein, L. L. Boyer, J. Appl. Phys. 49, 3959 (1974).
[CrossRef]

Bua, D.

C. B. Willingham, D. Bua, T. Varitimes, M. Schapira, H. Statz, F. A. Horrigan, “Laser Calorimetry of Infrared Optical Thin Films,” in Proceedings of the Fifth Annual Conference on Infrared Laser Window Materials, Las Vegas (December 1975).

Davisson, J. W.

M. Hass, J. W. Davisson, H. B. Rosenstock, J. Babiskin, Appl. Opt. 14, 1128 (1975).
[CrossRef] [PubMed]

M. Hass, J. W. Davisson, P. H. Klein, L. L. Boyer, J. Appl. Phys. 49, 3959 (1974).
[CrossRef]

Evans, B. L.

B. L. Evans, Proc. R. Soc. London Ser. A: 289, 275 (1966).
[CrossRef]

Gregory, D. A.

Hannigan, J.

T. J. Magee, N. M. Johnson, M. Lehmann, J. Peng, J. Hannigan, Rev. Sci. Instrum. 47, 301 (1976).
[CrossRef]

Harrington, J. A.

Hass, M.

Hordvik, A.

Horkvik, A.

B. Bendow, A. Horkvik, H. Lipson, L. Skolnik, Air Force Cambridge Research Laboratories Report AFCRL-72-0407 (AFCRL, Bedford, Mass., 1972).

Horrigan, F.

F. Horrigan, C. Klein, R. Rudko, D. Wilson, Microwaves 8, 68 (1969).

Horrigan, F. A.

C. B. Willingham, D. Bua, T. Varitimes, M. Schapira, H. Statz, F. A. Horrigan, “Laser Calorimetry of Infrared Optical Thin Films,” in Proceedings of the Fifth Annual Conference on Infrared Laser Window Materials, Las Vegas (December 1975).

Johnson, D. C.

Johnson, N. M.

T. J. Magee, N. M. Johnson, M. Lehmann, J. Peng, J. Hannigan, Rev. Sci. Instrum. 47, 301 (1976).
[CrossRef]

Klein, C.

F. Horrigan, C. Klein, R. Rudko, D. Wilson, Microwaves 8, 68 (1969).

Klein, P. H.

M. Hass, J. W. Davisson, P. H. Klein, L. L. Boyer, J. Appl. Phys. 49, 3959 (1974).
[CrossRef]

Lehmann, M.

T. J. Magee, N. M. Johnson, M. Lehmann, J. Peng, J. Hannigan, Rev. Sci. Instrum. 47, 301 (1976).
[CrossRef]

Lipson, H.

B. Bendow, A. Horkvik, H. Lipson, L. Skolnik, Air Force Cambridge Research Laboratories Report AFCRL-72-0407 (AFCRL, Bedford, Mass., 1972).

Loomis, J. S.

J. S. Loomis, “Development of Optical Coatings for High-Intensity Laser Applications,” AFWL-TR-74-117, contract F29601-71-C-0023 (February1975).

Magee, T. J.

T. J. Magee, N. M. Johnson, M. Lehmann, J. Peng, J. Hannigan, Rev. Sci. Instrum. 47, 301 (1976).
[CrossRef]

Peng, J.

T. J. Magee, N. M. Johnson, M. Lehmann, J. Peng, J. Hannigan, Rev. Sci. Instrum. 47, 301 (1976).
[CrossRef]

Pinnow, D. A.

Rich, T. C.

Rosenstock, H. B.

Rudko, R.

F. Horrigan, C. Klein, R. Rudko, D. Wilson, Microwaves 8, 68 (1969).

Schapira, M.

C. B. Willingham, D. Bua, T. Varitimes, M. Schapira, H. Statz, F. A. Horrigan, “Laser Calorimetry of Infrared Optical Thin Films,” in Proceedings of the Fifth Annual Conference on Infrared Laser Window Materials, Las Vegas (December 1975).

Segre, E.

E. Segre, Nuclei and Particles (Benjamin, New York, 1965), p. 170.

Show, A. C.

M. Sparks, A. C. Show, J. Appl. Phys. 45, 1510 (1974).
[CrossRef]

Skolnik, L.

B. Bendow, A. Horkvik, H. Lipson, L. Skolnik, Air Force Cambridge Research Laboratories Report AFCRL-72-0407 (AFCRL, Bedford, Mass., 1972).

Sparks, M.

M. Sparks, A. C. Show, J. Appl. Phys. 45, 1510 (1974).
[CrossRef]

Statz, H.

C. B. Willingham, D. Bua, T. Varitimes, M. Schapira, H. Statz, F. A. Horrigan, “Laser Calorimetry of Infrared Optical Thin Films,” in Proceedings of the Fifth Annual Conference on Infrared Laser Window Materials, Las Vegas (December 1975).

Varitimes, T.

C. B. Willingham, D. Bua, T. Varitimes, M. Schapira, H. Statz, F. A. Horrigan, “Laser Calorimetry of Infrared Optical Thin Films,” in Proceedings of the Fifth Annual Conference on Infrared Laser Window Materials, Las Vegas (December 1975).

Weil, R.

R. Weil, J. Appl. Phys. 41, 3012 (1970).
[CrossRef]

Willingham, C. B.

C. B. Willingham, D. Bua, T. Varitimes, M. Schapira, H. Statz, F. A. Horrigan, “Laser Calorimetry of Infrared Optical Thin Films,” in Proceedings of the Fifth Annual Conference on Infrared Laser Window Materials, Las Vegas (December 1975).

Wilson, D.

F. Horrigan, C. Klein, R. Rudko, D. Wilson, Microwaves 8, 68 (1969).

Appl. Opt.

J. Appl. Phys.

M. Sparks, A. C. Show, J. Appl. Phys. 45, 1510 (1974).
[CrossRef]

R. Weil, J. Appl. Phys. 41, 3012 (1970).
[CrossRef]

M. Hass, J. W. Davisson, P. H. Klein, L. L. Boyer, J. Appl. Phys. 49, 3959 (1974).
[CrossRef]

Microwaves

F. Horrigan, C. Klein, R. Rudko, D. Wilson, Microwaves 8, 68 (1969).

Nat. Bur. Stand. Circ. 539

Nat. Bur. Stand. Circ. 539, 6, 20 (1956).

Nat. Bur. Standards (U.S.) Monogr. 25

Nat. Bur. Standards (U.S.) Monogr. 25, Sec. 1, 7 (1961).

Proc. R. Soc. London Ser. A:

B. L. Evans, Proc. R. Soc. London Ser. A: 289, 275 (1966).
[CrossRef]

Rev. Sci. Instrum.

T. J. Magee, N. M. Johnson, M. Lehmann, J. Peng, J. Hannigan, Rev. Sci. Instrum. 47, 301 (1976).
[CrossRef]

Other

T. N. E. Greville, Ed., Theory and Applications of Spline Functions (Academic, New York, 1969).

E. Segre, Nuclei and Particles (Benjamin, New York, 1965), p. 170.

B. Bendow, A. Horkvik, H. Lipson, L. Skolnik, Air Force Cambridge Research Laboratories Report AFCRL-72-0407 (AFCRL, Bedford, Mass., 1972).

J. S. Loomis, “Development of Optical Coatings for High-Intensity Laser Applications,” AFWL-TR-74-117, contract F29601-71-C-0023 (February1975).

C. B. Willingham, D. Bua, T. Varitimes, M. Schapira, H. Statz, F. A. Horrigan, “Laser Calorimetry of Infrared Optical Thin Films,” in Proceedings of the Fifth Annual Conference on Infrared Laser Window Materials, Las Vegas (December 1975).

R. C. Weast, Ed., Handbook of Chemistry and Physics (CRC Press, Cleveland, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental arrangement of automated laser calorimeter.

Fig. 2
Fig. 2

Flow diagram of program for automated laser calorimeter: (a) complete system diagram; (b), (c), and (d) are parts one, two, and three, respectively, of detailed process flow diagram.

Fig. 3
Fig. 3

Calculator–plotter drawn data run on a forged KCl specimen at 10.6-μ wavelength. The laser power curve is the one that ends to the left of center in the graph.

Fig. 4
Fig. 4

Calculator–plotter drawn data taken on a CaF2 forged specimen at 3.8-μ wavelength.

Tables (1)

Tables Icon

Table I Physical Constants for Laser Calorimetry

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

β = [ 2 n / ( n 2 + 1 ) ] ( P A / P T L ) .
mC dT dt = P L + P A ,
mC | dT dt | T 0 = P L + P A ,
mC | dT dt | T 0 = P L ,
P A = mC ( | dT dt | T 0 + | dT dt | T 0 ) .
τ 1 = r 2 / ( 4 κ ) where κ = K / ρ .
τ 2 = Cm / hS .
β F = L L F ( β ¯ β ) ,
β F = L L F α ( β ¯ γ β ) ,
γ = 2 n F ( n F 2 + 1 ) ( 1 + R F 1 R F ) ,
α = n F 2 + 1 ( n F 2 1 ) + ( n F 2 1 ) ( λ 4 π n F L F ) sin ( 4 π n F L F λ ) ,
R F = 1 R T F 1 R T F R , R = ( n 1 n + 1 ) 2 .
β ( I ) = ( 2 n n 2 + 1 ) mC P ( I ) L [ Z ( I + 1 ) Z ( I 1 ) 2 AY + Z ( I + 1 ) Z ( I 1 ) AB ( I ) ] ,
β = I = R + 1 M 1 β ( I ) M R 1 .
σ 2 ( n ) = 1 N ( N 1 ) i = 1 N ( n i n ) 2 .
σ ( β ) = { 1 ( M R 1 ) ( M R 2 ) I = R + 1 M 1 [ β ( I ) β ] 2 } 1 / 2 .
β ¯
| dT dt | T 0
| dT dt | T 0

Metrics