Abstract

The analysis of unusually strong Raman backscattering signals from clouds shows that such signals cannot be merely related to filter on-line leakage. Theoretical calculations of Raman double scattering in an atmosphere with high optical depth values are presented, and it is shown that the Raman multiple scattering effect is not negligible. The results of the calculations are in good agreement with the experimental data.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Cooney, J. Appl. Meteorol. 11, 108 (1972).
    [CrossRef]
  2. R. G. Strauch, V. E. Derr, R. E. Cupp, Remote Sensing Environ. 2, 101 (1972).
    [CrossRef]
  3. H. Inaba, T. Kobayasi, Opto-electronics 4, 101 (1972).
    [CrossRef]
  4. D. A. Leonard, B. Caputo, Opt. Eng. 13, 10 (1974).
    [CrossRef]
  5. V. Zuev, G. Krekov, I. Naats, V. Scorinov, Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 11, 827 (1975).
  6. A. Cohen, J. Cooney, K. N. Geller, Appl. Opt. 15, 2896 (1976).
    [CrossRef] [PubMed]
  7. G. Placzek, in Handbuch der Radiologie, A. Marx, Ed. (Akademische Verlagsgesellschaft, Leipzig, 1934).
  8. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).
  9. A. Cohen, M. Graber, Opt. Quantum Electron. 7, 221 (1975).
    [CrossRef]
  10. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).

1976 (1)

1975 (2)

V. Zuev, G. Krekov, I. Naats, V. Scorinov, Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 11, 827 (1975).

A. Cohen, M. Graber, Opt. Quantum Electron. 7, 221 (1975).
[CrossRef]

1974 (1)

D. A. Leonard, B. Caputo, Opt. Eng. 13, 10 (1974).
[CrossRef]

1972 (3)

J. Cooney, J. Appl. Meteorol. 11, 108 (1972).
[CrossRef]

R. G. Strauch, V. E. Derr, R. E. Cupp, Remote Sensing Environ. 2, 101 (1972).
[CrossRef]

H. Inaba, T. Kobayasi, Opto-electronics 4, 101 (1972).
[CrossRef]

Caputo, B.

D. A. Leonard, B. Caputo, Opt. Eng. 13, 10 (1974).
[CrossRef]

Chandrasekhar, S.

S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).

Cohen, A.

Cooney, J.

Cupp, R. E.

R. G. Strauch, V. E. Derr, R. E. Cupp, Remote Sensing Environ. 2, 101 (1972).
[CrossRef]

Deirmendjian, D.

D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).

Derr, V. E.

R. G. Strauch, V. E. Derr, R. E. Cupp, Remote Sensing Environ. 2, 101 (1972).
[CrossRef]

Geller, K. N.

Graber, M.

A. Cohen, M. Graber, Opt. Quantum Electron. 7, 221 (1975).
[CrossRef]

Inaba, H.

H. Inaba, T. Kobayasi, Opto-electronics 4, 101 (1972).
[CrossRef]

Kobayasi, T.

H. Inaba, T. Kobayasi, Opto-electronics 4, 101 (1972).
[CrossRef]

Krekov, G.

V. Zuev, G. Krekov, I. Naats, V. Scorinov, Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 11, 827 (1975).

Leonard, D. A.

D. A. Leonard, B. Caputo, Opt. Eng. 13, 10 (1974).
[CrossRef]

Naats, I.

V. Zuev, G. Krekov, I. Naats, V. Scorinov, Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 11, 827 (1975).

Placzek, G.

G. Placzek, in Handbuch der Radiologie, A. Marx, Ed. (Akademische Verlagsgesellschaft, Leipzig, 1934).

Scorinov, V.

V. Zuev, G. Krekov, I. Naats, V. Scorinov, Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 11, 827 (1975).

Strauch, R. G.

R. G. Strauch, V. E. Derr, R. E. Cupp, Remote Sensing Environ. 2, 101 (1972).
[CrossRef]

Zuev, V.

V. Zuev, G. Krekov, I. Naats, V. Scorinov, Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 11, 827 (1975).

Appl. Opt. (1)

Izv. Acad. Sci. USSR Atmos. Oceanic Phys. (1)

V. Zuev, G. Krekov, I. Naats, V. Scorinov, Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 11, 827 (1975).

J. Appl. Meteorol. (1)

J. Cooney, J. Appl. Meteorol. 11, 108 (1972).
[CrossRef]

Opt. Eng. (1)

D. A. Leonard, B. Caputo, Opt. Eng. 13, 10 (1974).
[CrossRef]

Opt. Quantum Electron. (1)

A. Cohen, M. Graber, Opt. Quantum Electron. 7, 221 (1975).
[CrossRef]

Opto-electronics (1)

H. Inaba, T. Kobayasi, Opto-electronics 4, 101 (1972).
[CrossRef]

Remote Sensing Environ. (1)

R. G. Strauch, V. E. Derr, R. E. Cupp, Remote Sensing Environ. 2, 101 (1972).
[CrossRef]

Other (3)

D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).

G. Placzek, in Handbuch der Radiologie, A. Marx, Ed. (Akademische Verlagsgesellschaft, Leipzig, 1934).

S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Double scattering geometry. FOV refers to the lidar receiver field of view.

Fig. 2
Fig. 2

Lidar on-line backscattering signal from the cloud (6943-Å interference filter).

Fig. 3
Fig. 3

Rotational Raman backscattering signals. (a) Interference filter 6880 Å with low degree of rejection. The leakage of the strong on-line signal is present. (b) Interference filter 6916 Å with high degree of rejection.

Fig. 4
Fig. 4

Multiple scattering effect of the rotational Raman backscattering signal from the cloud with high optical depth value. Interference filter 6916 Å with high degree of rejection.

Fig. 5
Fig. 5

Theoretical calculations of rotational Raman (6916-Å) signal from the cloud with low (τ = 0.04 at a penetration depth of 20 m) optical depth values. The Raman wavelength interference filter has a high degree of rejection at the laser wavelength. —×—×—is single rotational Raman scattering signal; —○—○—is total Raman scattering signal (single and double scattering). To the right of the cloud base the pure rotational Raman signal in a cloudless atmosphere is plotted.

Fig. 6
Fig. 6

Same data as in Fig. 5, except that high [τ(20) = 0.6] optical depth values are presented.

Fig. 7
Fig. 7

Theoretical calculations of the rotational Raman (6880-Å) and the laser wavelength (6943-Å) scattering from a cloud with low [τ(20) = 0.06] optical depth value. The Raman wavelength interference filter has a relatively low degree of rejection at the laser wavelength. — ×—×— is single rotational Raman scattering signal; —○—○— is total scattering signal (Raman and on-line wavelength scattering).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

I Raman ( θ ) = I o ( 7 sin 2 θ cos 2 φ ) Q kn s ,
I Raman ( θ ) = I o ( 6 + cos 2 θ ) Q kn s , I Raman = 7 I o Q kn s .
I = ( I I U V ) .
I 0 = ( I o 0 0 0 ) .
I Raman s = 7 A V s I o Q kn s R s 2 exp ( δ R l ) exp ( δ M l ) ,
P M ( θ ) = 1 k M 2 ( P 1 0 0 0 0 P 2 0 0 0 0 P 3 P 4 0 0 P 4 P 3 ) : I M ( θ ) = P M ( θ ) L ( φ ) I o Δ V 1 R 1 , 2 2 exp [ δ M ( R 1 + R 1 , 2 ) ] ,
L ( φ ) = ( cos 2 φ sin 2 φ ½ sin 2 φ 0 sin 2 φ cos 2 φ ½ sin 2 φ 0 sin 2 φ sin 2 φ cos 2 φ 0 0 0 0 1 )
I R ( θ ) = I o Δ V 1 R 1 , 2 2 Q kn s ( ( 6 + cos 2 θ ) cos 2 φ 7 sin 2 φ 0 0 ) × exp [ ( δ M R 1 + δ R R 1 , 2 ) ] .
I M R ( R s ) = i j A Δ V i Δ V j I o Q kn s R i , j 2 R j , s 2 k M 2 [ P 1 M ( θ i ) ( 6 + cos 2 θ i ) cos 2 φ + 7 P 2 M ( θ i ) sin 2 φ ] exp [ δ M ( R i + R i , j ) δ R R j ]
I R M ( R s ) = i j A Δ V i Δ V j I o Q kn s R i , j 2 R j , s 2 k R 2 [ P 1 R ( π θ i ) ( 6 + cos 2 θ i ) cos 2 φ + 7 P 2 R ( π θ i ) sin 2 φ ] exp [ δ M R i δ R ( R i , j + R j ) ]
2 R s = H o + R i + R i , j + R j , s ,
Σ i , j
K = F N .

Metrics