Abstract

The idea is well entrenched in the literature that thin phase gratings (whether holographic or acoustically induced) should exhibit Raman-Nath behavior (and thus give several diffracted waves), and that thick phase gratings should show Bragg behavior (one diffracted beam and that only for Bragg angle incidence). The parameter Q of Klein and Cook, which is a normalized measure of grating thickness, has been extensively used as a criterion for deciding which regime will apply. It is perhaps not generally realized that Q is not a reliable parameter for this purpose but requires, as indeed Klein and Cook noted, a limitation on grating strength. This limitation is a matter of practical concern. For example, we have observed Raman-Nath behavior with Fe-doped LiNbO3 even for very large values of Q. The purpose of the present paper is to note that a parameter ρ (first defined by Nath) is an effective replacement for Q, since ρ is reliable and Q is not. ρ is defined as λ022n0n1, where λ0 is the vacuum wavelength of the light, Λ is the grating spacing, n0 is the mean refractive index, and n1 is the amplitude of the sinusoidal modulation of the refractive index. The grating thickness does not enter ρ, so the terms thin and thick are, strictly speaking, irrelevant to the question of which regime is operative. However, thin enough gratings will tend to operate in the Raman-Nath regime because the index modulation must be large for a thin grating to produce appreciable diffraction.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. V. Raman, N. S. N. Nath, Proc. Indian Acad. Sci. 4, 222 (1936).
  2. C. B. Bruckhardt, J. Opt. Soc. Am. 56, 1502 (1966).
    [CrossRef]
  3. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
  4. W. R. Klein, B. D. Cook, IEEE Trans. Sonics Ultrason. SU-14, 123 (1967).
    [CrossRef]
  5. L. Bergstein, D. Kermisch, Proc. Symp. Mod. Opt. 17, 655 (1967).
  6. R. S. Chu, T. Tamir, IEEE Trans. Microwave Theory Tech. MTT-18, 486 (1970).
  7. F. G. Kaspar, J. Opt. Soc. Am. 63, 37 (1973).
    [CrossRef]
  8. R. Magnusson, T. K. Gaylord, J. Opt. Soc. Am. 69, 1165 (1977).
    [CrossRef]
  9. R. Alferness, J. Opt. Soc. Am. 66, 353 (1976).
    [CrossRef]
  10. R. Alferness, Appl. Phys. 7, 29 (1975).
    [CrossRef]
  11. S. F. Su, T. K. Gaylord, J. Opt. Soc. Am. 65, 59 (1975).
    [CrossRef]
  12. N. S. N. Nath, Proc. Indian Acad. Sci. 8, 499 (1938).
  13. P. Phariseau, Proc. Indian Acad. Sci. Sect. A 44A, 165 (1956).
  14. D. Kermisch, J. Opt. Soc. Am. 59, 1409 (1969).
    [CrossRef]
  15. N. Uchida, J. Opt. Soc. Am. 63, 280 (1973).
    [CrossRef]
  16. V. E. Wood, N. F. Hartman, C. M. Verber, R. P. Kenan, J. Appl. Phys. 46, 1214 (1975).
    [CrossRef]

1977 (1)

R. Magnusson, T. K. Gaylord, J. Opt. Soc. Am. 69, 1165 (1977).
[CrossRef]

1976 (1)

1975 (3)

S. F. Su, T. K. Gaylord, J. Opt. Soc. Am. 65, 59 (1975).
[CrossRef]

R. Alferness, Appl. Phys. 7, 29 (1975).
[CrossRef]

V. E. Wood, N. F. Hartman, C. M. Verber, R. P. Kenan, J. Appl. Phys. 46, 1214 (1975).
[CrossRef]

1973 (2)

1970 (1)

R. S. Chu, T. Tamir, IEEE Trans. Microwave Theory Tech. MTT-18, 486 (1970).

1969 (2)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

D. Kermisch, J. Opt. Soc. Am. 59, 1409 (1969).
[CrossRef]

1967 (2)

W. R. Klein, B. D. Cook, IEEE Trans. Sonics Ultrason. SU-14, 123 (1967).
[CrossRef]

L. Bergstein, D. Kermisch, Proc. Symp. Mod. Opt. 17, 655 (1967).

1966 (1)

1956 (1)

P. Phariseau, Proc. Indian Acad. Sci. Sect. A 44A, 165 (1956).

1938 (1)

N. S. N. Nath, Proc. Indian Acad. Sci. 8, 499 (1938).

1936 (1)

C. V. Raman, N. S. N. Nath, Proc. Indian Acad. Sci. 4, 222 (1936).

Alferness, R.

Bergstein, L.

L. Bergstein, D. Kermisch, Proc. Symp. Mod. Opt. 17, 655 (1967).

Bruckhardt, C. B.

Chu, R. S.

R. S. Chu, T. Tamir, IEEE Trans. Microwave Theory Tech. MTT-18, 486 (1970).

Cook, B. D.

W. R. Klein, B. D. Cook, IEEE Trans. Sonics Ultrason. SU-14, 123 (1967).
[CrossRef]

Gaylord, T. K.

R. Magnusson, T. K. Gaylord, J. Opt. Soc. Am. 69, 1165 (1977).
[CrossRef]

S. F. Su, T. K. Gaylord, J. Opt. Soc. Am. 65, 59 (1975).
[CrossRef]

Hartman, N. F.

V. E. Wood, N. F. Hartman, C. M. Verber, R. P. Kenan, J. Appl. Phys. 46, 1214 (1975).
[CrossRef]

Kaspar, F. G.

Kenan, R. P.

V. E. Wood, N. F. Hartman, C. M. Verber, R. P. Kenan, J. Appl. Phys. 46, 1214 (1975).
[CrossRef]

Kermisch, D.

D. Kermisch, J. Opt. Soc. Am. 59, 1409 (1969).
[CrossRef]

L. Bergstein, D. Kermisch, Proc. Symp. Mod. Opt. 17, 655 (1967).

Klein, W. R.

W. R. Klein, B. D. Cook, IEEE Trans. Sonics Ultrason. SU-14, 123 (1967).
[CrossRef]

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Magnusson, R.

R. Magnusson, T. K. Gaylord, J. Opt. Soc. Am. 69, 1165 (1977).
[CrossRef]

Nath, N. S. N.

N. S. N. Nath, Proc. Indian Acad. Sci. 8, 499 (1938).

C. V. Raman, N. S. N. Nath, Proc. Indian Acad. Sci. 4, 222 (1936).

Phariseau, P.

P. Phariseau, Proc. Indian Acad. Sci. Sect. A 44A, 165 (1956).

Raman, C. V.

C. V. Raman, N. S. N. Nath, Proc. Indian Acad. Sci. 4, 222 (1936).

Su, S. F.

Tamir, T.

R. S. Chu, T. Tamir, IEEE Trans. Microwave Theory Tech. MTT-18, 486 (1970).

Uchida, N.

Verber, C. M.

V. E. Wood, N. F. Hartman, C. M. Verber, R. P. Kenan, J. Appl. Phys. 46, 1214 (1975).
[CrossRef]

Wood, V. E.

V. E. Wood, N. F. Hartman, C. M. Verber, R. P. Kenan, J. Appl. Phys. 46, 1214 (1975).
[CrossRef]

Appl. Phys. (1)

R. Alferness, Appl. Phys. 7, 29 (1975).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

IEEE Trans. Microwave Theory Tech. (1)

R. S. Chu, T. Tamir, IEEE Trans. Microwave Theory Tech. MTT-18, 486 (1970).

IEEE Trans. Sonics Ultrason. (1)

W. R. Klein, B. D. Cook, IEEE Trans. Sonics Ultrason. SU-14, 123 (1967).
[CrossRef]

J. Appl. Phys. (1)

V. E. Wood, N. F. Hartman, C. M. Verber, R. P. Kenan, J. Appl. Phys. 46, 1214 (1975).
[CrossRef]

J. Opt. Soc. Am. (7)

Proc. Indian Acad. Sci. (2)

N. S. N. Nath, Proc. Indian Acad. Sci. 8, 499 (1938).

C. V. Raman, N. S. N. Nath, Proc. Indian Acad. Sci. 4, 222 (1936).

Proc. Indian Acad. Sci. Sect. A (1)

P. Phariseau, Proc. Indian Acad. Sci. Sect. A 44A, 165 (1956).

Proc. Symp. Mod. Opt. (1)

L. Bergstein, D. Kermisch, Proc. Symp. Mod. Opt. 17, 655 (1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

The intensity of four modes vs the grating strength ν for ρ = 1 and Bl = 1/l (i.e., Bragg incidence for the first-order mode). The sum of the intensities of the four modes shown was close to unity for this case, all the other modes being negligibly small.

Fig. 2
Fig. 2

The intensity of the zero- and first-order modes vs the grating strength ν for ρ = 50 and Bl = 1/l. All the other modes are negligible. For this value of ρ, Q = 100 ν.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

2 E + k 2 E = 0 ,
n = n 0 + n 1 cos ( 2 π x / Λ ) .
E = l = ϕ l ( z ) exp ( j σ ¯ l r ¯ ) ,
ϕ l ξ = j ρ l 2 ( 1 B l ) ϕ l + j ( ϕ l 1 + ϕ l + 1 ) ,

Metrics