Abstract

The fabrication and optimization of composite submillimeter wave bolometers with metal film absorbing elements and doped Ge thermometers are described. Performance characteristics are given for 4 × 4-mm bolometers designed for operation at both 4He and 3He temperatures. The performance expected from such bolometers when they are optimized for various values of background loading is calculated. Current dependent noise, which can arise from any of several sources, is included in the analysis. This can make it impossible to reach the background fluctuation noise limit. Feed structures for these bolometers which employ Winston light concentrators are described.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. Low, J. Opt. Soc. Am. 51, 1300 (1961).
    [CrossRef]
  2. N. Coron, G. Dambier, J. Leblanc, in Infrared Detector Techniques for Space Research, V. Manno, J. Ring, Eds. (D. Reidel, Dordrecht-Holland, 1971), pp. 121–131.
  3. F. J. Low, private communication.
  4. J. Clarke, G. I. Hoffer, P. L. Richards, Rev. Phys. Appl. 9, 69 (1974).
    [CrossRef]
  5. M. W. Werner, J. H. Elias, D. Y. Gezari, M. G. Hauser, W. E. Westbrook, Astrophys. J. 199, L185 (1975).
    [CrossRef]
  6. J. Clarke, G. I. Hoffer, P. L. Richards, N.-H. Yeh, in Low Temperature Physics—LT14, M. Krusius, M. Vuorio, Eds. (American Elsevier, New York, 1975), Vol. 4, pp. 226–229.
  7. G. I. Hoffer, Ph.D. thesis, U. California and Lawrence Berkeley Laboratory Report 3759 (1975) (unpublished).
  8. J. Clarke, G. I. Hoffer, P. L. Richards, N.-H. Yeh, J. Appl. Phys. (submitted).
  9. Bolometer optimization has been considered by a number of authors including, for example, S. Zwerdling, R. A. Smith, J. P. Theriault, Infrared Phys. 8, 271 (1968),Infrared Inc. Laboratories (unpublished promotional literature), N. Coron, Infrared Phys.16, 411 (1976).
    [CrossRef]
  10. W. B. Lewis, Proc. Phys. Soc. (London) 57, 34 (1947).
    [CrossRef]
  11. Some authors introduce the bolometer dynamic resistance into the noise expressions derived from equilibrium thermodynamics. This plausible procedure does not appear to have been justified by a proper nonequilibrium analysis. An analogous problem arises with the quantity G in the thermal noise term. Since these corrections change our bolometer optimization by less than 30%, we have not introduced them into this manuscript.
  12. F. J. Low, A. R. Hoffman, Appl. Opt. 2, 649 (1963).
    [CrossRef]
  13. R. C. Jones, J. Opt. Soc. Am. 43, 1 (1953).
    [CrossRef]
  14. D. P. Woody, J. C. Mather, N. S. Nishioka, P. L. Richards, Phys. Rev. Lett. 34, 1036 (1975).
    [CrossRef]
  15. H. D. Drew, A. J. Sievers, Appl. Opt. 8, 2067 (1969).We are grateful to Sievers for furnishing the thermometer material used in the 3He temperature bolometer listed in Table II.
    [CrossRef] [PubMed]
  16. R. Winston, J. Opt. Soc. Am. 60, 245 (1970).
    [CrossRef]
  17. A. Rabl, R. Winston, Appl. Opt. 15, 2880 (1976).
    [CrossRef] [PubMed]
  18. D. A. Harper, R. H. Hildebrand, R. Stiening, R. Winston, Appl. Opt. 15, 53 (1976).
    [CrossRef] [PubMed]

1976 (2)

1975 (2)

M. W. Werner, J. H. Elias, D. Y. Gezari, M. G. Hauser, W. E. Westbrook, Astrophys. J. 199, L185 (1975).
[CrossRef]

D. P. Woody, J. C. Mather, N. S. Nishioka, P. L. Richards, Phys. Rev. Lett. 34, 1036 (1975).
[CrossRef]

1974 (1)

J. Clarke, G. I. Hoffer, P. L. Richards, Rev. Phys. Appl. 9, 69 (1974).
[CrossRef]

1970 (1)

1969 (1)

1968 (1)

Bolometer optimization has been considered by a number of authors including, for example, S. Zwerdling, R. A. Smith, J. P. Theriault, Infrared Phys. 8, 271 (1968),Infrared Inc. Laboratories (unpublished promotional literature), N. Coron, Infrared Phys.16, 411 (1976).
[CrossRef]

1963 (1)

1961 (1)

1953 (1)

1947 (1)

W. B. Lewis, Proc. Phys. Soc. (London) 57, 34 (1947).
[CrossRef]

Clarke, J.

J. Clarke, G. I. Hoffer, P. L. Richards, Rev. Phys. Appl. 9, 69 (1974).
[CrossRef]

J. Clarke, G. I. Hoffer, P. L. Richards, N.-H. Yeh, in Low Temperature Physics—LT14, M. Krusius, M. Vuorio, Eds. (American Elsevier, New York, 1975), Vol. 4, pp. 226–229.

J. Clarke, G. I. Hoffer, P. L. Richards, N.-H. Yeh, J. Appl. Phys. (submitted).

Coron, N.

N. Coron, G. Dambier, J. Leblanc, in Infrared Detector Techniques for Space Research, V. Manno, J. Ring, Eds. (D. Reidel, Dordrecht-Holland, 1971), pp. 121–131.

Dambier, G.

N. Coron, G. Dambier, J. Leblanc, in Infrared Detector Techniques for Space Research, V. Manno, J. Ring, Eds. (D. Reidel, Dordrecht-Holland, 1971), pp. 121–131.

Drew, H. D.

Elias, J. H.

M. W. Werner, J. H. Elias, D. Y. Gezari, M. G. Hauser, W. E. Westbrook, Astrophys. J. 199, L185 (1975).
[CrossRef]

Gezari, D. Y.

M. W. Werner, J. H. Elias, D. Y. Gezari, M. G. Hauser, W. E. Westbrook, Astrophys. J. 199, L185 (1975).
[CrossRef]

Harper, D. A.

Hauser, M. G.

M. W. Werner, J. H. Elias, D. Y. Gezari, M. G. Hauser, W. E. Westbrook, Astrophys. J. 199, L185 (1975).
[CrossRef]

Hildebrand, R. H.

Hoffer, G. I.

J. Clarke, G. I. Hoffer, P. L. Richards, Rev. Phys. Appl. 9, 69 (1974).
[CrossRef]

J. Clarke, G. I. Hoffer, P. L. Richards, N.-H. Yeh, in Low Temperature Physics—LT14, M. Krusius, M. Vuorio, Eds. (American Elsevier, New York, 1975), Vol. 4, pp. 226–229.

J. Clarke, G. I. Hoffer, P. L. Richards, N.-H. Yeh, J. Appl. Phys. (submitted).

G. I. Hoffer, Ph.D. thesis, U. California and Lawrence Berkeley Laboratory Report 3759 (1975) (unpublished).

Hoffman, A. R.

Jones, R. C.

Leblanc, J.

N. Coron, G. Dambier, J. Leblanc, in Infrared Detector Techniques for Space Research, V. Manno, J. Ring, Eds. (D. Reidel, Dordrecht-Holland, 1971), pp. 121–131.

Lewis, W. B.

W. B. Lewis, Proc. Phys. Soc. (London) 57, 34 (1947).
[CrossRef]

Low, F. J.

Mather, J. C.

D. P. Woody, J. C. Mather, N. S. Nishioka, P. L. Richards, Phys. Rev. Lett. 34, 1036 (1975).
[CrossRef]

Nishioka, N. S.

D. P. Woody, J. C. Mather, N. S. Nishioka, P. L. Richards, Phys. Rev. Lett. 34, 1036 (1975).
[CrossRef]

Rabl, A.

Richards, P. L.

D. P. Woody, J. C. Mather, N. S. Nishioka, P. L. Richards, Phys. Rev. Lett. 34, 1036 (1975).
[CrossRef]

J. Clarke, G. I. Hoffer, P. L. Richards, Rev. Phys. Appl. 9, 69 (1974).
[CrossRef]

J. Clarke, G. I. Hoffer, P. L. Richards, N.-H. Yeh, in Low Temperature Physics—LT14, M. Krusius, M. Vuorio, Eds. (American Elsevier, New York, 1975), Vol. 4, pp. 226–229.

J. Clarke, G. I. Hoffer, P. L. Richards, N.-H. Yeh, J. Appl. Phys. (submitted).

Sievers, A. J.

Smith, R. A.

Bolometer optimization has been considered by a number of authors including, for example, S. Zwerdling, R. A. Smith, J. P. Theriault, Infrared Phys. 8, 271 (1968),Infrared Inc. Laboratories (unpublished promotional literature), N. Coron, Infrared Phys.16, 411 (1976).
[CrossRef]

Stiening, R.

Theriault, J. P.

Bolometer optimization has been considered by a number of authors including, for example, S. Zwerdling, R. A. Smith, J. P. Theriault, Infrared Phys. 8, 271 (1968),Infrared Inc. Laboratories (unpublished promotional literature), N. Coron, Infrared Phys.16, 411 (1976).
[CrossRef]

Werner, M. W.

M. W. Werner, J. H. Elias, D. Y. Gezari, M. G. Hauser, W. E. Westbrook, Astrophys. J. 199, L185 (1975).
[CrossRef]

Westbrook, W. E.

M. W. Werner, J. H. Elias, D. Y. Gezari, M. G. Hauser, W. E. Westbrook, Astrophys. J. 199, L185 (1975).
[CrossRef]

Winston, R.

Woody, D. P.

D. P. Woody, J. C. Mather, N. S. Nishioka, P. L. Richards, Phys. Rev. Lett. 34, 1036 (1975).
[CrossRef]

Yeh, N.-H.

J. Clarke, G. I. Hoffer, P. L. Richards, N.-H. Yeh, J. Appl. Phys. (submitted).

J. Clarke, G. I. Hoffer, P. L. Richards, N.-H. Yeh, in Low Temperature Physics—LT14, M. Krusius, M. Vuorio, Eds. (American Elsevier, New York, 1975), Vol. 4, pp. 226–229.

Zwerdling, S.

Bolometer optimization has been considered by a number of authors including, for example, S. Zwerdling, R. A. Smith, J. P. Theriault, Infrared Phys. 8, 271 (1968),Infrared Inc. Laboratories (unpublished promotional literature), N. Coron, Infrared Phys.16, 411 (1976).
[CrossRef]

Appl. Opt. (4)

Astrophys. J. (1)

M. W. Werner, J. H. Elias, D. Y. Gezari, M. G. Hauser, W. E. Westbrook, Astrophys. J. 199, L185 (1975).
[CrossRef]

Infrared Phys. (1)

Bolometer optimization has been considered by a number of authors including, for example, S. Zwerdling, R. A. Smith, J. P. Theriault, Infrared Phys. 8, 271 (1968),Infrared Inc. Laboratories (unpublished promotional literature), N. Coron, Infrared Phys.16, 411 (1976).
[CrossRef]

J. Opt. Soc. Am. (3)

Phys. Rev. Lett. (1)

D. P. Woody, J. C. Mather, N. S. Nishioka, P. L. Richards, Phys. Rev. Lett. 34, 1036 (1975).
[CrossRef]

Proc. Phys. Soc. (London) (1)

W. B. Lewis, Proc. Phys. Soc. (London) 57, 34 (1947).
[CrossRef]

Rev. Phys. Appl. (1)

J. Clarke, G. I. Hoffer, P. L. Richards, Rev. Phys. Appl. 9, 69 (1974).
[CrossRef]

Other (6)

Some authors introduce the bolometer dynamic resistance into the noise expressions derived from equilibrium thermodynamics. This plausible procedure does not appear to have been justified by a proper nonequilibrium analysis. An analogous problem arises with the quantity G in the thermal noise term. Since these corrections change our bolometer optimization by less than 30%, we have not introduced them into this manuscript.

N. Coron, G. Dambier, J. Leblanc, in Infrared Detector Techniques for Space Research, V. Manno, J. Ring, Eds. (D. Reidel, Dordrecht-Holland, 1971), pp. 121–131.

F. J. Low, private communication.

J. Clarke, G. I. Hoffer, P. L. Richards, N.-H. Yeh, in Low Temperature Physics—LT14, M. Krusius, M. Vuorio, Eds. (American Elsevier, New York, 1975), Vol. 4, pp. 226–229.

G. I. Hoffer, Ph.D. thesis, U. California and Lawrence Berkeley Laboratory Report 3759 (1975) (unpublished).

J. Clarke, G. I. Hoffer, P. L. Richards, N.-H. Yeh, J. Appl. Phys. (submitted).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of a composite bolometer with a metal film absorber and a doped Ge thermometer.

Fig. 2
Fig. 2

Spectral density of the voltage noise from a bolometer system for three values of bias current. The sharp features are mechanical resonances in the bolometer and the electrical wiring. Since these data were obtained by sampling and Fourier transformation, some of the sharp peak have been aliased (reflected) about the maximum frequency of 250 Hz.

Fig. 3
Fig. 3

Calculated contributions to the electrical NEPE of a bolometer similar to that described in Table I which has been optimized for varying amounts of absorbed 300-K Rayleigh-Jeans background power. The straight line is the background fluctuation contribution, and the curved lines are the contributions from all other terms in Eq. (3) at four different modulation frequencies. The solid lines include the excess current noise term with N =8.8 × 10−12. The dashed lines show the performance that could be achieved with N =0.

Fig. 4
Fig. 4

Bolometer feed optics system to limit background radiation. Winston concentrator A defines the input solid angle Ωi. Winston concentrator B recollimates the radiation for a filter or a spectrometer. Winston Ωfb converter reconcentrates the signal onto the bolometer.

Fig. 5
Fig. 5

Calculated absorptance of a 30-μm sapphire substrate backed with a thin film with a surface resistance of 188 Ω/□. This quantity has a weak frequency dependence. It has been averaged over the spectral range from 1 cm−1 to 100 cm−1.

Tables (2)

Tables Icon

Table I Design and Performance Parameters for a 4 × 4-mm Ge:Ga Composite Bolometer

Tables Icon

Table II Present Status of 4 × 4-mm Composite Bolometers

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

A = [ 4 n ( n + 1 ) 2 ] 4 n Z 0 / R ( n + 1 + Z 0 / R ) 2 .
( NEP E ) B = ( 2 k T B P B ) 1 / 2 .
( NEP E ) 2 = 2 k T B P B + 4 k T 2 G + 4 kTR | S | 2 + N I 2 R 2 ω | S | 2 + 4 k T L R L | S | 2 ( R R L + R ) 2 + K V ω | S | 2 + K I R 2 | S | 2 .
| S | 2 = R 2 I 2 γ 2 ( 1 δ ) 2 G e 2 ( 1 + ω 2 C 2 / G e 2 ) ,
T = T S + ( P B + I 2 R ) / G .
V current 2 = 8.8 × 10 12 R 2 I 2 / ω ( V 2 / H z )
V preamp 2 = 2.0 × 10 15 / ω + 3.6 × 10 29 R 2 ( V 2 / H z )

Metrics