Abstract

The polarization and magnetooptic properties of a sample of single-mode optical fiber have been investigated. The fiber acts as a linear retarder, and the degree of retardation is dependent on the external pressure applied to the fiber. The stress optic coefficient is found to be 8.72 × 10−10 N−1 m2. The direction of linear polarization is rotated when a longitudinal magnetic field is applied to the fiber (Faraday effect). The Verdet constant is 1.56 × 10−2 min A−1. The intrinsic specific linear retardation of the fiber is found to be less than 0.44 rad m−1 from the magnetooptic measurements. The fiber has been used in an experimental current measurement device.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. G. Cohen, Bell Syst. Tech. J. 50, 23 (1971).
  2. F. P. Kapron, N. F. Borelli, D. B. Keck, IEEE J. Quantum Electron. QE-8, 222 (1972).
    [CrossRef]
  3. A. Papp, H. Harms, Appl. Opt. 14, 2406 (1975).
    [CrossRef] [PubMed]
  4. H. Harms, A. Papp, K. Kempter, Appl. Opt. 15, 799 (1976).
    [CrossRef] [PubMed]
  5. W. A. Gambling, D. N. Payne, D. N. Hammond, S. R. Norman, Proc. IEE 123, 570 (1976).
  6. R. C. Jones, J. Opt. Soc. Am. 31, 488 (1941).
    [CrossRef]
  7. W. J. Tabor, F. S. Chen, J. Appl. Phys. 40, 2760 (1969).
    [CrossRef]
  8. A. J. Rogers, Proc. IEE 120, 261 (1973).
  9. S. Saito, J. Hamosaki, Y. Fujü, K. Yokoyama, Y. Ohno, IEEE J. Quantum Electron. QE-3, 589 (1967).
    [CrossRef]
  10. H. Hodara, Proc. Inst. Electr. Electron. Eng. 54, 368 (1966).

1976 (2)

W. A. Gambling, D. N. Payne, D. N. Hammond, S. R. Norman, Proc. IEE 123, 570 (1976).

H. Harms, A. Papp, K. Kempter, Appl. Opt. 15, 799 (1976).
[CrossRef] [PubMed]

1975 (1)

1973 (1)

A. J. Rogers, Proc. IEE 120, 261 (1973).

1972 (1)

F. P. Kapron, N. F. Borelli, D. B. Keck, IEEE J. Quantum Electron. QE-8, 222 (1972).
[CrossRef]

1971 (1)

L. G. Cohen, Bell Syst. Tech. J. 50, 23 (1971).

1969 (1)

W. J. Tabor, F. S. Chen, J. Appl. Phys. 40, 2760 (1969).
[CrossRef]

1967 (1)

S. Saito, J. Hamosaki, Y. Fujü, K. Yokoyama, Y. Ohno, IEEE J. Quantum Electron. QE-3, 589 (1967).
[CrossRef]

1966 (1)

H. Hodara, Proc. Inst. Electr. Electron. Eng. 54, 368 (1966).

1941 (1)

Borelli, N. F.

F. P. Kapron, N. F. Borelli, D. B. Keck, IEEE J. Quantum Electron. QE-8, 222 (1972).
[CrossRef]

Chen, F. S.

W. J. Tabor, F. S. Chen, J. Appl. Phys. 40, 2760 (1969).
[CrossRef]

Cohen, L. G.

L. G. Cohen, Bell Syst. Tech. J. 50, 23 (1971).

Fujü, Y.

S. Saito, J. Hamosaki, Y. Fujü, K. Yokoyama, Y. Ohno, IEEE J. Quantum Electron. QE-3, 589 (1967).
[CrossRef]

Gambling, W. A.

W. A. Gambling, D. N. Payne, D. N. Hammond, S. R. Norman, Proc. IEE 123, 570 (1976).

Hammond, D. N.

W. A. Gambling, D. N. Payne, D. N. Hammond, S. R. Norman, Proc. IEE 123, 570 (1976).

Hamosaki, J.

S. Saito, J. Hamosaki, Y. Fujü, K. Yokoyama, Y. Ohno, IEEE J. Quantum Electron. QE-3, 589 (1967).
[CrossRef]

Harms, H.

Hodara, H.

H. Hodara, Proc. Inst. Electr. Electron. Eng. 54, 368 (1966).

Jones, R. C.

Kapron, F. P.

F. P. Kapron, N. F. Borelli, D. B. Keck, IEEE J. Quantum Electron. QE-8, 222 (1972).
[CrossRef]

Keck, D. B.

F. P. Kapron, N. F. Borelli, D. B. Keck, IEEE J. Quantum Electron. QE-8, 222 (1972).
[CrossRef]

Kempter, K.

Norman, S. R.

W. A. Gambling, D. N. Payne, D. N. Hammond, S. R. Norman, Proc. IEE 123, 570 (1976).

Ohno, Y.

S. Saito, J. Hamosaki, Y. Fujü, K. Yokoyama, Y. Ohno, IEEE J. Quantum Electron. QE-3, 589 (1967).
[CrossRef]

Papp, A.

Payne, D. N.

W. A. Gambling, D. N. Payne, D. N. Hammond, S. R. Norman, Proc. IEE 123, 570 (1976).

Rogers, A. J.

A. J. Rogers, Proc. IEE 120, 261 (1973).

Saito, S.

S. Saito, J. Hamosaki, Y. Fujü, K. Yokoyama, Y. Ohno, IEEE J. Quantum Electron. QE-3, 589 (1967).
[CrossRef]

Tabor, W. J.

W. J. Tabor, F. S. Chen, J. Appl. Phys. 40, 2760 (1969).
[CrossRef]

Yokoyama, K.

S. Saito, J. Hamosaki, Y. Fujü, K. Yokoyama, Y. Ohno, IEEE J. Quantum Electron. QE-3, 589 (1967).
[CrossRef]

Appl. Opt. (2)

Bell Syst. Tech. J. (1)

L. G. Cohen, Bell Syst. Tech. J. 50, 23 (1971).

IEEE J. Quantum Electron. (2)

F. P. Kapron, N. F. Borelli, D. B. Keck, IEEE J. Quantum Electron. QE-8, 222 (1972).
[CrossRef]

S. Saito, J. Hamosaki, Y. Fujü, K. Yokoyama, Y. Ohno, IEEE J. Quantum Electron. QE-3, 589 (1967).
[CrossRef]

J. Appl. Phys. (1)

W. J. Tabor, F. S. Chen, J. Appl. Phys. 40, 2760 (1969).
[CrossRef]

J. Opt. Soc. Am. (1)

Proc. IEE (2)

A. J. Rogers, Proc. IEE 120, 261 (1973).

W. A. Gambling, D. N. Payne, D. N. Hammond, S. R. Norman, Proc. IEE 123, 570 (1976).

Proc. Inst. Electr. Electron. Eng. (1)

H. Hodara, Proc. Inst. Electr. Electron. Eng. 54, 368 (1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental apparatus.

Fig. 2
Fig. 2

Variation of intensity ratio P with input polarization angle θ0.

Fig. 3
Fig. 3

Variation of output polarization angle θ1 with input polarization angle θ0.

Fig. 4
Fig. 4

Schematic diagram of a current measurement device using single-mode optical fiber.

Fig. 5
Fig. 5

Graph of detector output against busbar current.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

( E x E y ) = [ exp ( j δ / 2 ) 0 0 exp ( j δ / 2 ) ] ( E x E y ) .
( E X E Y ) = ( cos θ 1 sin θ 1 sin θ 1 cos θ 1 ) × [ exp ( j θ / 2 ) 0 0 exp ( j δ / 2 ) ] ( cos θ 0 sin θ 0 ) E 0 exp ( j ω t ) .
( | E X | 2 | E Y | 2 ) = ( cos 2 θ 1 cos 2 θ 0 + sin 2 θ 1 sin 2 θ 0 + ½ sin 2 θ 1 sin 2 θ 0 cos δ sin 2 θ 1 cos 2 θ 0 + cos 2 θ 1 sin 2 θ 0 ½ sin 2 θ 1 sin 2 θ 0 cos δ ) E 0 2 .
Γ = ( | E X | 2 | E Y | 2 ) / ( | E X | 2 + | E Y | 2 ) .
Γ = cos 2 θ 1 cos 2 θ 0 + sin 2 θ 1 sin 2 θ 0 cos δ .
tan 2 θ 1 = tan 2 θ 0 cos δ .
P = ( cos 2 2 θ 0 + sin 2 2 θ 0 cos 2 δ ) 1 / 2 .
Maxima : P = 1 for θ 0 = m ( π / 2 ) m = integer Minima : P = | cos δ | for θ 0 = ( 2 m + 1 ) ( π / 4 ) .
δ = δ s l ,
F = V L H dl ,
( E x E y ) z = ( A B B A * ) ( E x E y ) 0 ,
A = cos ( ϕ / 2 ) + j cos χ sin ( ϕ / 2 ) ,
B = sin χ sin ( ϕ / 2 ) ,
( ϕ / 2 ) 2 = ( δ / 2 ) 2 + F 2 ,
tan χ = F / ( δ / 2 ) .
( E x E y ) l = [ exp ( j δ 2 / 2 ) 0 0 exp ( j δ 2 / 2 ) ] ( A B B A * ) × [ exp ( j δ 0 / 2 ) 0 0 exp ( j δ 0 / 2 ) ] ( E x E y ) 0 ,
( E x E y ) 0 = [ 0 E 0 exp ( j ω t ) ] .
( E x E y ) l = { BE 0 exp [ j ( ω t + δ 2 / 2 ) ] | A | E 0 exp [ j ( ω t + δ 2 / 2 η ) ] ] ,
T = 2 | A | B cos ( δ 2 + η ) .
T = sin 2 F ,

Metrics