Abstract

Helium–neon lasers have been fabricated using methods and materials particularly suited to high-volume in-line production. Pilot-project results suggest that satisfactory life and performance can probably be achieved in production lasers incorporating pressed or ground soft-glass parts, extensive solder-glass seals, and thin-film-metallization cathodes. The new construction methods suggested should lead to other innovative laser products.

© 1977 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Hochuli, P. R. Haldemann, Gas Laser, U.S. Patent3,614,642, (19October1971).
  2. J. P. Goldsborough, in Laser Handbook, F. T. Arecchi, Ed. (North-Holland, Amsterdam, 1972), pp. 597ff.
  3. G. Francis, “The Glow Discharge at Low Pressure,” in Handbuch der Physik, S. Flugge, Ed. (Springer-Verlag, Berlin, 1956), Vol. 22.
    [CrossRef]
  4. cf. O. A. Boyarchikov, A. S. Shipalov, T. Mosk. Energ. Inst. Radioelektron. No. 108, 89 (1972). English translation available from National Technical Information Service as AD771885.
  5. J. Gallup, J. Am. Ceram. Soc. 29, 277 (1946).
    [CrossRef]
  6. E. J. Panner, “Catastrophic Early Life Electron Tube Failure as a Result of Electrolytic Currents Flowing Through the Glaas Bulb,” in Advances in Electron Tube Techniques (Proceedings of the Fifth National Conference), David Slater, Ed. (Pergamon, New York1961).
  7. R. H. Dalton, “Electrolysis and Polarization in Glass,” in Comptes Rendus VIIeCongrès International du Verre, Bruxelles (Institut National du Verre, Charleroi, Belgique, 1965).
  8. cf. D. C. Sinclair, W. Earl Bell, Gas Laser Technology (Holt, Rinehart, New York, 1969).
  9. K. Andringa, Laser gyroscope, U.S. Patent3,930,731 (1976).
  10. U. Hochuli, P. Haldemann, D. Hardwick, IEEE J. Quantum Electron. QE-3, 612 (1967).
    [CrossRef]

1972 (1)

cf. O. A. Boyarchikov, A. S. Shipalov, T. Mosk. Energ. Inst. Radioelektron. No. 108, 89 (1972). English translation available from National Technical Information Service as AD771885.

1967 (1)

U. Hochuli, P. Haldemann, D. Hardwick, IEEE J. Quantum Electron. QE-3, 612 (1967).
[CrossRef]

1946 (1)

J. Gallup, J. Am. Ceram. Soc. 29, 277 (1946).
[CrossRef]

Andringa, K.

K. Andringa, Laser gyroscope, U.S. Patent3,930,731 (1976).

Boyarchikov, cf. O. A.

cf. O. A. Boyarchikov, A. S. Shipalov, T. Mosk. Energ. Inst. Radioelektron. No. 108, 89 (1972). English translation available from National Technical Information Service as AD771885.

Dalton, R. H.

R. H. Dalton, “Electrolysis and Polarization in Glass,” in Comptes Rendus VIIeCongrès International du Verre, Bruxelles (Institut National du Verre, Charleroi, Belgique, 1965).

Earl Bell, W.

cf. D. C. Sinclair, W. Earl Bell, Gas Laser Technology (Holt, Rinehart, New York, 1969).

Francis, G.

G. Francis, “The Glow Discharge at Low Pressure,” in Handbuch der Physik, S. Flugge, Ed. (Springer-Verlag, Berlin, 1956), Vol. 22.
[CrossRef]

Gallup, J.

J. Gallup, J. Am. Ceram. Soc. 29, 277 (1946).
[CrossRef]

Goldsborough, J. P.

J. P. Goldsborough, in Laser Handbook, F. T. Arecchi, Ed. (North-Holland, Amsterdam, 1972), pp. 597ff.

Haldemann, P.

U. Hochuli, P. Haldemann, D. Hardwick, IEEE J. Quantum Electron. QE-3, 612 (1967).
[CrossRef]

Haldemann, P. R.

U. Hochuli, P. R. Haldemann, Gas Laser, U.S. Patent3,614,642, (19October1971).

Hardwick, D.

U. Hochuli, P. Haldemann, D. Hardwick, IEEE J. Quantum Electron. QE-3, 612 (1967).
[CrossRef]

Hochuli, U.

U. Hochuli, P. Haldemann, D. Hardwick, IEEE J. Quantum Electron. QE-3, 612 (1967).
[CrossRef]

U. Hochuli, P. R. Haldemann, Gas Laser, U.S. Patent3,614,642, (19October1971).

Panner, E. J.

E. J. Panner, “Catastrophic Early Life Electron Tube Failure as a Result of Electrolytic Currents Flowing Through the Glaas Bulb,” in Advances in Electron Tube Techniques (Proceedings of the Fifth National Conference), David Slater, Ed. (Pergamon, New York1961).

Shipalov, A. S.

cf. O. A. Boyarchikov, A. S. Shipalov, T. Mosk. Energ. Inst. Radioelektron. No. 108, 89 (1972). English translation available from National Technical Information Service as AD771885.

Sinclair, cf. D. C.

cf. D. C. Sinclair, W. Earl Bell, Gas Laser Technology (Holt, Rinehart, New York, 1969).

IEEE J. Quantum Electron. (1)

U. Hochuli, P. Haldemann, D. Hardwick, IEEE J. Quantum Electron. QE-3, 612 (1967).
[CrossRef]

J. Am. Ceram. Soc. (1)

J. Gallup, J. Am. Ceram. Soc. 29, 277 (1946).
[CrossRef]

T. Mosk. Energ. Inst. Radioelektron. No. 108 (1)

cf. O. A. Boyarchikov, A. S. Shipalov, T. Mosk. Energ. Inst. Radioelektron. No. 108, 89 (1972). English translation available from National Technical Information Service as AD771885.

Other (7)

U. Hochuli, P. R. Haldemann, Gas Laser, U.S. Patent3,614,642, (19October1971).

J. P. Goldsborough, in Laser Handbook, F. T. Arecchi, Ed. (North-Holland, Amsterdam, 1972), pp. 597ff.

G. Francis, “The Glow Discharge at Low Pressure,” in Handbuch der Physik, S. Flugge, Ed. (Springer-Verlag, Berlin, 1956), Vol. 22.
[CrossRef]

E. J. Panner, “Catastrophic Early Life Electron Tube Failure as a Result of Electrolytic Currents Flowing Through the Glaas Bulb,” in Advances in Electron Tube Techniques (Proceedings of the Fifth National Conference), David Slater, Ed. (Pergamon, New York1961).

R. H. Dalton, “Electrolysis and Polarization in Glass,” in Comptes Rendus VIIeCongrès International du Verre, Bruxelles (Institut National du Verre, Charleroi, Belgique, 1965).

cf. D. C. Sinclair, W. Earl Bell, Gas Laser Technology (Holt, Rinehart, New York, 1969).

K. Andringa, Laser gyroscope, U.S. Patent3,930,731 (1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Integrated laser substrate made by grinding depressions in a 2.2-cm thick float glass slab. A flared-end glass tube (not shown) is to be sealed into the round-bottom groove entering the long side of the cathode cavity to carry the discharge into the center of the cathode volume.

Fig. 2
Fig. 2

Assembled pressed-glass laser on test stand.

Fig. 3
Fig. 3

Pressed-glass laser substrate.

Fig. 4
Fig. 4

Pressed-glass laser substrate after preliminary processing.

Fig. 5
Fig. 5

Float-glass mating substrate for pressed-glass laser after metallization. (The gray background and the fold at upper left are artifacts introduced by the photographer.)

Fig. 6
Fig. 6

Float-glass part after seal burnout.

Fig. 7
Fig. 7

Alternative constructions. Figure 7(a) illustrates a Brewster window, a vacuum-processing tubulation sealed in a groove in one substrate, and a platinum-foil anode. Figure 7(b) shows a three-part glass body and a tubular-aluminum cathode. Mirrors were yet to be added to the device shown.

Fig. 8
Fig. 8

Experimental device with too small a cathode-connecting channel and too shallow a cathode volume: (a) full view; (b) closeup of severe cathode erosion.

Fig. 9
Fig. 9

Pressed glass laser exhibiting dendritic growths in the solder glass seal.

Fig. 10
Fig. 10

Partial life history of pressed-glass laser PGL 12: (a)power output; (b) current; (c) anode voltage; (d) pressure indicated by Hastings gauge (actual pressure is about 2× lower). Pressure fluctuations between 5000 h and 10,000 h are probably due to an erratically performing meter.

Metrics