Abstract

An experimental investigation of ablative wall flashlamps used to pump high peak power dye laser is presented. The duration of the flashes was about 2 μsec. Three tubes with diameters 1.6 mm, 4.4 mm, and 8 mm were used. We have measured the emission spectrum, the brightness, and the efficiency between 250 nm and 580 nm for electrical energy input densities up to 560 J/cm3. The performance of the flashlamps with xenon and air is shown. The experiments demonstrate that above an energy density of about 150 J/cm3 the gas type and pressure are unimportant but that xenon is always superior.

© 1977 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. P. Vanyukov, A. A. Mak, Usp. Fiz. Nauk. 66, 301 (1958) [Sav. Phys. Usp. 1, 1 (1959)].
  2. R. Goldstein, F. N. Mastrup, IEEE J. Quantum Electron. QE-3, 521 (1967).
    [CrossRef]
  3. R. G. Buser, W. P. Rahilly, Appl. Opt. 7, 523 (1968).
    [CrossRef] [PubMed]
  4. C. M. Ferrar, Rev. Sci. Instrum. 40, 1436 (1969).
    [CrossRef]
  5. H. J. Baker, T. A. King, J. Phys. E 8, 219 (1975).
    [CrossRef]
  6. M. A. Gusinow, J. Appl. Phys. 44, 4567 (1973).
    [CrossRef]
  7. M. A. Gusinow, J. Appl. Phys. 46, 4847 (1975).
    [CrossRef]
  8. M. A. Gusinow, IEEE J. Quantum Electron. QE-11, 929 (1975).
    [CrossRef]
  9. M. A. Gusinow, Appl. Opt. 14, 2645 (1975).
    [CrossRef] [PubMed]
  10. J. P. Markeiwicz, J. L. Emmett, IEEE J. Quantum Electron. QE-2, 707 (1966).
    [CrossRef]
  11. American Society for Testing Materials, Methods for Emission Spectrochemical Analysis (ASTM, Philadelphia, 1964).
  12. J. L. Emmett, A. L. Schawlow, E. H. Weinberg, J. Appl. Phys. 35, 2601 (1964).
    [CrossRef]

1975 (4)

H. J. Baker, T. A. King, J. Phys. E 8, 219 (1975).
[CrossRef]

M. A. Gusinow, J. Appl. Phys. 46, 4847 (1975).
[CrossRef]

M. A. Gusinow, IEEE J. Quantum Electron. QE-11, 929 (1975).
[CrossRef]

M. A. Gusinow, Appl. Opt. 14, 2645 (1975).
[CrossRef] [PubMed]

1973 (1)

M. A. Gusinow, J. Appl. Phys. 44, 4567 (1973).
[CrossRef]

1969 (1)

C. M. Ferrar, Rev. Sci. Instrum. 40, 1436 (1969).
[CrossRef]

1968 (1)

1967 (1)

R. Goldstein, F. N. Mastrup, IEEE J. Quantum Electron. QE-3, 521 (1967).
[CrossRef]

1966 (1)

J. P. Markeiwicz, J. L. Emmett, IEEE J. Quantum Electron. QE-2, 707 (1966).
[CrossRef]

1964 (1)

J. L. Emmett, A. L. Schawlow, E. H. Weinberg, J. Appl. Phys. 35, 2601 (1964).
[CrossRef]

1958 (1)

M. P. Vanyukov, A. A. Mak, Usp. Fiz. Nauk. 66, 301 (1958) [Sav. Phys. Usp. 1, 1 (1959)].

Baker, H. J.

H. J. Baker, T. A. King, J. Phys. E 8, 219 (1975).
[CrossRef]

Buser, R. G.

Emmett, J. L.

J. P. Markeiwicz, J. L. Emmett, IEEE J. Quantum Electron. QE-2, 707 (1966).
[CrossRef]

J. L. Emmett, A. L. Schawlow, E. H. Weinberg, J. Appl. Phys. 35, 2601 (1964).
[CrossRef]

Ferrar, C. M.

C. M. Ferrar, Rev. Sci. Instrum. 40, 1436 (1969).
[CrossRef]

Goldstein, R.

R. Goldstein, F. N. Mastrup, IEEE J. Quantum Electron. QE-3, 521 (1967).
[CrossRef]

Gusinow, M. A.

M. A. Gusinow, IEEE J. Quantum Electron. QE-11, 929 (1975).
[CrossRef]

M. A. Gusinow, J. Appl. Phys. 46, 4847 (1975).
[CrossRef]

M. A. Gusinow, Appl. Opt. 14, 2645 (1975).
[CrossRef] [PubMed]

M. A. Gusinow, J. Appl. Phys. 44, 4567 (1973).
[CrossRef]

King, T. A.

H. J. Baker, T. A. King, J. Phys. E 8, 219 (1975).
[CrossRef]

Mak, A. A.

M. P. Vanyukov, A. A. Mak, Usp. Fiz. Nauk. 66, 301 (1958) [Sav. Phys. Usp. 1, 1 (1959)].

Markeiwicz, J. P.

J. P. Markeiwicz, J. L. Emmett, IEEE J. Quantum Electron. QE-2, 707 (1966).
[CrossRef]

Mastrup, F. N.

R. Goldstein, F. N. Mastrup, IEEE J. Quantum Electron. QE-3, 521 (1967).
[CrossRef]

Rahilly, W. P.

Schawlow, A. L.

J. L. Emmett, A. L. Schawlow, E. H. Weinberg, J. Appl. Phys. 35, 2601 (1964).
[CrossRef]

Vanyukov, M. P.

M. P. Vanyukov, A. A. Mak, Usp. Fiz. Nauk. 66, 301 (1958) [Sav. Phys. Usp. 1, 1 (1959)].

Weinberg, E. H.

J. L. Emmett, A. L. Schawlow, E. H. Weinberg, J. Appl. Phys. 35, 2601 (1964).
[CrossRef]

Appl. Opt. (2)

IEEE J. Quantum Electron. (3)

M. A. Gusinow, IEEE J. Quantum Electron. QE-11, 929 (1975).
[CrossRef]

R. Goldstein, F. N. Mastrup, IEEE J. Quantum Electron. QE-3, 521 (1967).
[CrossRef]

J. P. Markeiwicz, J. L. Emmett, IEEE J. Quantum Electron. QE-2, 707 (1966).
[CrossRef]

J. Appl. Phys. (3)

M. A. Gusinow, J. Appl. Phys. 44, 4567 (1973).
[CrossRef]

M. A. Gusinow, J. Appl. Phys. 46, 4847 (1975).
[CrossRef]

J. L. Emmett, A. L. Schawlow, E. H. Weinberg, J. Appl. Phys. 35, 2601 (1964).
[CrossRef]

J. Phys. E (1)

H. J. Baker, T. A. King, J. Phys. E 8, 219 (1975).
[CrossRef]

Rev. Sci. Instrum. (1)

C. M. Ferrar, Rev. Sci. Instrum. 40, 1436 (1969).
[CrossRef]

Usp. Fiz. Nauk. (1)

M. P. Vanyukov, A. A. Mak, Usp. Fiz. Nauk. 66, 301 (1958) [Sav. Phys. Usp. 1, 1 (1959)].

Other (1)

American Society for Testing Materials, Methods for Emission Spectrochemical Analysis (ASTM, Philadelphia, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of flashlamp housing: A, capacitor; B, Rogowski coil; C, spark gap; D, quartz tube; E, electrodes; F, metal housing (ground return).

Fig. 2
Fig. 2

Emission spectrum of 8-mm lamp, air 2 Torr: —— ρ = 44 J/cm3; - - - ρ = 62.5 J/cm3; – · – · – · – ρ = 84 J/cm3.

Fig. 3
Fig. 3

Emission spectrum of 4.4-mm lamp, air 2 Torr: – · – · – · – ρ = 48 J/cm3; ⋯ ρ = 84 J/cm3; - - - ρ = 130 J/cm3; —— ρ = 204 J/cm3.

Fig. 4
Fig. 4

Emission spectrum of 1.6-mm lamp, air 2 Torr: - - - ρ = 180 J/cm3;– · – · – ρ = 300 J/cm3;—— ρ = 420 J/cm3; ⋯ ρ = 560 J/cm3.

Fig. 5
Fig. 5

Emission spectrum of 8-mm lamp with xenon at 44 J/cm3: - - - 10 Torr; – · – · – · – · – · 30 Torr; ⋯ 60 Torr; —— air 2 Torr (for comparison).

Fig. 6
Fig. 6

Emission spectrum of 8-mm lamp with xenon at 84 J/cm3: —— 10 Torr; ⋯ 30 Torr; - - - 60 Torr; – · – · – · – · air 2 Torr (for comparison).

Fig. 7
Fig. 7

Emission spectrum of 4.4-mm lamp with xenon at 84 J/cm3: —— 10 Torr; ⋯ 30 Torr; – · – · – · – · 60 Torr; - - - air 2 Torr (for comparison).

Fig. 8
Fig. 8

Emission spectrum of 4.4-mm lamp with xenon at 204 J/cm3: - - - 10 Torr; ⋯ 30 Torr; – · – · – · 60 Torr; —— air 2 Torr (for comparison).

Fig. 9
Fig. 9

Emission spectrum of 1.6-mm lamp with xenon at 180 J/cm3: —— 10 Torr; - - - 30 Torr; ⋯ 60 Torr; – · – · – · – · air 2 Torr (for comparison).

Fig. 10
Fig. 10

Emission spectrum of 1.6-mm lamp with xenon at 560 J/cm3: ——10 Torr; - - - 30 Torr; – · – · – · – · 60 Torr; ⋯ air 2 Torr (for comparison).

Fig. 11
Fig. 11

Flashlamp brightness (250–580 nm) vs electrical input energy density.

Fig. 12
Fig. 12

Energy efficiency (250–580 nm) vs electrical input energy density air 2 Torr.

Metrics