Abstract

We measure the wavefront coherence and the irradiance fluctuations of stellar sources to obtain integrated refractive-turbulence profiles of two regions of the atmosphere. Comparison of experimental data during our measurement program shows an equal contribution of upper and lower layers to the limitation of the optical seeing. We also note the great variability of turbulence located above 3 km up to the stratosphere, from night to night. When simultaneously operated, these two methods are suitable for astronomical site testing.

© 1977 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Mikesell, Publ. U.S. Naval Observatory, Second Series 17, Part 4, 141 (1955).
  2. P. E. Barnhart, G. Keller, W. E. Mitchell, Report TR 59-291 (Air Force Cambridge Research Center, Bedford, Mass., 1959).
  3. W. M. Protheroe, Publ. U. Pennsylvania (Flower and Cook Obs.) 90, 27 (1961).
  4. V. I. Tatarski, Wave Propagation in a Turbulent Medium (Dover, New York, 1961).
  5. A. T. Young, Appl. Opt. 8, 869 (1969).
    [CrossRef] [PubMed]
  6. A. Rocca, F. Roddier, J. Vernin, J. Opt. Soc. Am. 64, 1000 (1974).
    [CrossRef]
  7. J. Vernin, F. Roddier, C. R. Acad. Sci. (Paris) 280, 463 (1975).
  8. J. Vernin, F. Roddier, J. Opt. Soc. Am. 63, 270 (1973).
    [CrossRef]
  9. G. R. Ochs, Ting I Wang, R. S. Lawrence, S. F. Clifford, Appl. Opt. 15, 2504 (1976).
    [CrossRef] [PubMed]
  10. G. R. Ochs, S. F. Clifford, R. S. Lawrence, Ting I Wang, NOAA Tech. Rept. ERL. WPL 30.
  11. F. Martin, J. Borgnino, F. Roddier, Nouv. Rev. Opt. 6, 15 (1975).
    [CrossRef]
  12. R. E. Hufnagel, Agard Conference, Proceedings 33 (1967).
  13. J. Borgnino, F. Martin, Nouv. Rev. Opt. (in press).
  14. C. Roddier, F. Roddier, J. Opt. Soc. Am. 63, 661 (1973).
    [CrossRef]
  15. C. Roddier, F. Roddier, J. Opt. Soc. Am. 65, 664 (1975).
    [CrossRef]
  16. J. C. Dainty, Opt. Commun. 7, 129 (1973).
    [CrossRef]
  17. D. L. Fried, J. Opt. Soc. Am. 56, 1372 (1966).
    [CrossRef]
  18. J. L. Bufton, Appl. Opt. 12, 1785 (1973).
    [CrossRef] [PubMed]
  19. R. E. Hufnagel, in Digest of Topical Meeting on Optical Propagation Through Turbulence (Optical Society of America, Washington D.C., 1974).
  20. R. Barletti, G. Ceppatelli, E. Moroder, L. Patternō, A. Righini, J.O.S.O. Annual Report Sit 21 (1974), Sit 27 (1975) Firenze.

1976 (1)

1975 (3)

J. Vernin, F. Roddier, C. R. Acad. Sci. (Paris) 280, 463 (1975).

F. Martin, J. Borgnino, F. Roddier, Nouv. Rev. Opt. 6, 15 (1975).
[CrossRef]

C. Roddier, F. Roddier, J. Opt. Soc. Am. 65, 664 (1975).
[CrossRef]

1974 (1)

1973 (4)

1969 (1)

1967 (1)

R. E. Hufnagel, Agard Conference, Proceedings 33 (1967).

1966 (1)

1961 (1)

W. M. Protheroe, Publ. U. Pennsylvania (Flower and Cook Obs.) 90, 27 (1961).

1955 (1)

A. H. Mikesell, Publ. U.S. Naval Observatory, Second Series 17, Part 4, 141 (1955).

Barletti, R.

R. Barletti, G. Ceppatelli, E. Moroder, L. Patternō, A. Righini, J.O.S.O. Annual Report Sit 21 (1974), Sit 27 (1975) Firenze.

Barnhart, P. E.

P. E. Barnhart, G. Keller, W. E. Mitchell, Report TR 59-291 (Air Force Cambridge Research Center, Bedford, Mass., 1959).

Borgnino, J.

F. Martin, J. Borgnino, F. Roddier, Nouv. Rev. Opt. 6, 15 (1975).
[CrossRef]

J. Borgnino, F. Martin, Nouv. Rev. Opt. (in press).

Bufton, J. L.

Ceppatelli, G.

R. Barletti, G. Ceppatelli, E. Moroder, L. Patternō, A. Righini, J.O.S.O. Annual Report Sit 21 (1974), Sit 27 (1975) Firenze.

Clifford, S. F.

G. R. Ochs, Ting I Wang, R. S. Lawrence, S. F. Clifford, Appl. Opt. 15, 2504 (1976).
[CrossRef] [PubMed]

G. R. Ochs, S. F. Clifford, R. S. Lawrence, Ting I Wang, NOAA Tech. Rept. ERL. WPL 30.

Dainty, J. C.

J. C. Dainty, Opt. Commun. 7, 129 (1973).
[CrossRef]

Fried, D. L.

Hufnagel, R. E.

R. E. Hufnagel, Agard Conference, Proceedings 33 (1967).

R. E. Hufnagel, in Digest of Topical Meeting on Optical Propagation Through Turbulence (Optical Society of America, Washington D.C., 1974).

Keller, G.

P. E. Barnhart, G. Keller, W. E. Mitchell, Report TR 59-291 (Air Force Cambridge Research Center, Bedford, Mass., 1959).

Lawrence, R. S.

G. R. Ochs, Ting I Wang, R. S. Lawrence, S. F. Clifford, Appl. Opt. 15, 2504 (1976).
[CrossRef] [PubMed]

G. R. Ochs, S. F. Clifford, R. S. Lawrence, Ting I Wang, NOAA Tech. Rept. ERL. WPL 30.

Martin, F.

F. Martin, J. Borgnino, F. Roddier, Nouv. Rev. Opt. 6, 15 (1975).
[CrossRef]

J. Borgnino, F. Martin, Nouv. Rev. Opt. (in press).

Mikesell, A. H.

A. H. Mikesell, Publ. U.S. Naval Observatory, Second Series 17, Part 4, 141 (1955).

Mitchell, W. E.

P. E. Barnhart, G. Keller, W. E. Mitchell, Report TR 59-291 (Air Force Cambridge Research Center, Bedford, Mass., 1959).

Moroder, E.

R. Barletti, G. Ceppatelli, E. Moroder, L. Patternō, A. Righini, J.O.S.O. Annual Report Sit 21 (1974), Sit 27 (1975) Firenze.

Ochs, G. R.

G. R. Ochs, Ting I Wang, R. S. Lawrence, S. F. Clifford, Appl. Opt. 15, 2504 (1976).
[CrossRef] [PubMed]

G. R. Ochs, S. F. Clifford, R. S. Lawrence, Ting I Wang, NOAA Tech. Rept. ERL. WPL 30.

Patterno, L.

R. Barletti, G. Ceppatelli, E. Moroder, L. Patternō, A. Righini, J.O.S.O. Annual Report Sit 21 (1974), Sit 27 (1975) Firenze.

Protheroe, W. M.

W. M. Protheroe, Publ. U. Pennsylvania (Flower and Cook Obs.) 90, 27 (1961).

Righini, A.

R. Barletti, G. Ceppatelli, E. Moroder, L. Patternō, A. Righini, J.O.S.O. Annual Report Sit 21 (1974), Sit 27 (1975) Firenze.

Rocca, A.

Roddier, C.

Roddier, F.

Tatarski, V. I.

V. I. Tatarski, Wave Propagation in a Turbulent Medium (Dover, New York, 1961).

Vernin, J.

Wang, Ting I

G. R. Ochs, Ting I Wang, R. S. Lawrence, S. F. Clifford, Appl. Opt. 15, 2504 (1976).
[CrossRef] [PubMed]

G. R. Ochs, S. F. Clifford, R. S. Lawrence, Ting I Wang, NOAA Tech. Rept. ERL. WPL 30.

Young, A. T.

Agard Conference, Proceedings 33 (1)

R. E. Hufnagel, Agard Conference, Proceedings 33 (1967).

Appl. Opt. (3)

C. R. Acad. Sci. (Paris) (1)

J. Vernin, F. Roddier, C. R. Acad. Sci. (Paris) 280, 463 (1975).

J. Opt. Soc. Am. (5)

Nouv. Rev. Opt. (1)

F. Martin, J. Borgnino, F. Roddier, Nouv. Rev. Opt. 6, 15 (1975).
[CrossRef]

Opt. Commun. (1)

J. C. Dainty, Opt. Commun. 7, 129 (1973).
[CrossRef]

Publ. U. Pennsylvania (Flower and Cook Obs.) (1)

W. M. Protheroe, Publ. U. Pennsylvania (Flower and Cook Obs.) 90, 27 (1961).

Publ. U.S. Naval Observatory (1)

A. H. Mikesell, Publ. U.S. Naval Observatory, Second Series 17, Part 4, 141 (1955).

Other (6)

P. E. Barnhart, G. Keller, W. E. Mitchell, Report TR 59-291 (Air Force Cambridge Research Center, Bedford, Mass., 1959).

V. I. Tatarski, Wave Propagation in a Turbulent Medium (Dover, New York, 1961).

G. R. Ochs, S. F. Clifford, R. S. Lawrence, Ting I Wang, NOAA Tech. Rept. ERL. WPL 30.

R. E. Hufnagel, in Digest of Topical Meeting on Optical Propagation Through Turbulence (Optical Society of America, Washington D.C., 1974).

R. Barletti, G. Ceppatelli, E. Moroder, L. Patternō, A. Righini, J.O.S.O. Annual Report Sit 21 (1974), Sit 27 (1975) Firenze.

J. Borgnino, F. Martin, Nouv. Rev. Opt. (in press).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the rotation interferometer: A and B, roof prisms; S, beam splitter; L, converging lens; P1, focal plane of the telescope. Two images of the telescope entrance pupil are observed in plane P2 making an angle β. From O, the prism edges are seen in plane P3 making an angle β/2.

Fig. 2
Fig. 2

Fringes contrast vs spatial frequency plotted in log–log log scale. Here, Fried’s parameter r0 is 3.9 cm.

Fig. 3
Fig. 3

Schematic of spatioangular correlation measurement apparatus. By triangulation, we shall observe some correlation for a light beam geometry such as ρ = θh.

Fig. 4
Fig. 4

Theoretical spatioangular correlation functions computed along the components axis of the double star Castor for turbulent layers at different altitudes but with the same CN2.

Fig. 5
Fig. 5

Experimental (dots) and theoretical (line) spatioangular correlation functions showing the presence of three layers at 6 km, 10 km, and 15 km. Weights needed to fit dots are respectively, CN2(hihi = 1.0, 1.5, and 0.8 × 10−13 m1/3.

Fig. 6
Fig. 6

Integrated refractive-index obtained by interferometric method vs scintillation method. Each point corresponds to a single night.

Fig. 7
Fig. 7

Refractive-index profile vs altitude convolved by a 6-km rectangular function for Hufnagel (dashed line), Barletti (dotted line), and ours (broken line).

Fig. 8
Fig. 8

Two examples of CN2Δh night evolution.

Tables (2)

Tables Icon

Table I Refractive-index Structure Constant Integrated over Three Atmospheric Regions

Tables Icon

Table II Comparison Between Hufnagel’s, Barletti’s, and Our Measurements of Mean Integrated Refractive-index

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

C ( r ) = exp - 3.44 ( r / r 0 ) 5 / 3 .
0 C N 2 d h = 0.06 λ 2 cos θ r 0 - 5 / 3 ,
( 0 C N 2 d h ) m 1 / 3 = 1.5 × 10 - 14 r 0 - 5 / 3 ,
W ( K , h ) = 8 π k 2 ( 0.033 C N 2 Δ h ) K - 11 / 3 sin 2 h K 2 / 2 k ,
C ( ρ , h ) Hankel transform Fourier transform W ( K , h ) .
V 1 = A 1 [ B 1 I ( r , α ) + B 2 I ( r , α + θ ) ] , V 2 = A 2 [ B 1 I ( r + ρ , α ) + B 2 I ( r + ρ , α + θ ) ] .
C ( ρ , θ , h ) = I ˜ ( r , α , h ) I ˜ ( r + ρ , α + θ , h ) I 2 ,
V ˜ 1 V ˜ 2 V 1 V 2 = B 1 2 + B 2 2 ( B 1 + B 2 ) 2 C ( ρ , O , h ) + B 1 B 2 ( B 1 + B 2 ) 2 [ C ( ρ , θ , h ) + C ( ρ , - θ , h ) ] .
B 1 2 + B 2 2 ( B 1 + B 2 ) 2 = 0.59 and B 1 B 2 ( B 1 + B 2 ) 2 = 0.21.
~ 3 C N 2 ( h ) d h = i C N 2 ( h i ) Δ h i .
Scintillation :             X i = 3 km C N 2 ( h ) d h Interferometry :             Y i = 0 C N 2 ( h ) d h } for the i th night .
y = x + 4.9 × 10 - 13 m 1 / 3 .
0 C N 2 d h 3 km C N 2 d h + 0 3 km C N 2 d h
0 3 km C N 2 ( h ) d h = 4.9 × 10 - 13 m 1 / 3 .
Y max Y min 5             and             X max X min 27 ,
0 3 km C N 2 ( h ) d h and 3 km C N 2 ( h ) d h .
h - 3 km h + 3 km C N 2 ( h ) d h .

Metrics