Abstract

The association of a Michelson interferometer and a Fabry-Perot etalon enables the control of the displacement of the peaks of Fabry-Perot transmittance by pressure scanning through Michelson fringes counting. Assuming the variations of the refractive index of gas as a function of wavenumber, pressure, and temperature are known, we show that it is perfectly possible to compute the number of fringes to shift in order to position a chosen peak of Fabry-Perot transmittance for any point in the spectrum. These possibilities enable us to build a real spectrometer whose accuracy is better than 0.05 cm−1 in the whole visible range.

© 1977 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. T. Duong, S. Gerstenkorn, J. M. Helbert, Rev. Phys. Appl. 2, 249 (1967).
    [CrossRef]
  2. A. Steudel, H. Walther, J. Phys. Colloq. (Paris) C2, 28, Suppl. 3–4, 255 (1967).
  3. R. Chabbal, P. Jacquinot, Rev. Opt. 40 (4), 157 (1961).
  4. H. Chantrel, J. Rech. CNRS 46, 17 (1959).
  5. H. Chantrel, J. Andre, D. Merle, Nouv. Rev. Opt. 2, 25 (1971).
    [CrossRef]
  6. P. M. Hindle, N. K. Reay, J. Sci. Instrum. 44, 360 (1967).
    [CrossRef]
  7. J. E. Mack, D. P. McNutt, F. L. Roessler, R. Chabbal, Appl. Opt. 2, 873 (1963).
  8. P. Laforie. Spectromètre intégral à étalon Fabry-Perot pour l’étude à haute résolution dans le domaine visible et proche uv de spectre d’émission, d’absorption et Raman. Thèse Rouen (juin1976).
  9. J. M. Helbert, P. Laforie, P. MicheRev. Phys. Appl.12, in press (1977).
    [CrossRef]
  10. J. V. Ramsay, Appl. Opt. 1, 411 (1962).
    [CrossRef]
  11. R. Chabbal, Thèse Paris (1957).
  12. E. R. Peck, B. N. Khanna, J. Opt. Soc. Am. 56, 1059 (1966).
    [CrossRef]
  13. P. Miche, Thèse Rouen (1976).
  14. C. Huron, P. Miche, P. Laforie, Automatismes XX (11–12), 430 (1975).
  15. B. Edlen, J. Opt. Soc. Am. 43, 344 (1953).
    [CrossRef]

1975 (1)

C. Huron, P. Miche, P. Laforie, Automatismes XX (11–12), 430 (1975).

1971 (1)

H. Chantrel, J. Andre, D. Merle, Nouv. Rev. Opt. 2, 25 (1971).
[CrossRef]

1967 (3)

P. M. Hindle, N. K. Reay, J. Sci. Instrum. 44, 360 (1967).
[CrossRef]

H. T. Duong, S. Gerstenkorn, J. M. Helbert, Rev. Phys. Appl. 2, 249 (1967).
[CrossRef]

A. Steudel, H. Walther, J. Phys. Colloq. (Paris) C2, 28, Suppl. 3–4, 255 (1967).

1966 (1)

1963 (1)

1962 (1)

1961 (1)

R. Chabbal, P. Jacquinot, Rev. Opt. 40 (4), 157 (1961).

1959 (1)

H. Chantrel, J. Rech. CNRS 46, 17 (1959).

1953 (1)

B. Edlen, J. Opt. Soc. Am. 43, 344 (1953).
[CrossRef]

Andre, J.

H. Chantrel, J. Andre, D. Merle, Nouv. Rev. Opt. 2, 25 (1971).
[CrossRef]

Chabbal, R.

J. E. Mack, D. P. McNutt, F. L. Roessler, R. Chabbal, Appl. Opt. 2, 873 (1963).

R. Chabbal, P. Jacquinot, Rev. Opt. 40 (4), 157 (1961).

R. Chabbal, Thèse Paris (1957).

Chantrel, H.

H. Chantrel, J. Andre, D. Merle, Nouv. Rev. Opt. 2, 25 (1971).
[CrossRef]

H. Chantrel, J. Rech. CNRS 46, 17 (1959).

Duong, H. T.

H. T. Duong, S. Gerstenkorn, J. M. Helbert, Rev. Phys. Appl. 2, 249 (1967).
[CrossRef]

Edlen, B.

B. Edlen, J. Opt. Soc. Am. 43, 344 (1953).
[CrossRef]

Gerstenkorn, S.

H. T. Duong, S. Gerstenkorn, J. M. Helbert, Rev. Phys. Appl. 2, 249 (1967).
[CrossRef]

Helbert, J. M.

H. T. Duong, S. Gerstenkorn, J. M. Helbert, Rev. Phys. Appl. 2, 249 (1967).
[CrossRef]

J. M. Helbert, P. Laforie, P. MicheRev. Phys. Appl.12, in press (1977).
[CrossRef]

Hindle, P. M.

P. M. Hindle, N. K. Reay, J. Sci. Instrum. 44, 360 (1967).
[CrossRef]

Huron, C.

C. Huron, P. Miche, P. Laforie, Automatismes XX (11–12), 430 (1975).

Jacquinot, P.

R. Chabbal, P. Jacquinot, Rev. Opt. 40 (4), 157 (1961).

Khanna, B. N.

Laforie, P.

C. Huron, P. Miche, P. Laforie, Automatismes XX (11–12), 430 (1975).

J. M. Helbert, P. Laforie, P. MicheRev. Phys. Appl.12, in press (1977).
[CrossRef]

P. Laforie. Spectromètre intégral à étalon Fabry-Perot pour l’étude à haute résolution dans le domaine visible et proche uv de spectre d’émission, d’absorption et Raman. Thèse Rouen (juin1976).

Mack, J. E.

McNutt, D. P.

Merle, D.

H. Chantrel, J. Andre, D. Merle, Nouv. Rev. Opt. 2, 25 (1971).
[CrossRef]

Miche, P.

C. Huron, P. Miche, P. Laforie, Automatismes XX (11–12), 430 (1975).

J. M. Helbert, P. Laforie, P. MicheRev. Phys. Appl.12, in press (1977).
[CrossRef]

P. Miche, Thèse Rouen (1976).

Peck, E. R.

Ramsay, J. V.

Reay, N. K.

P. M. Hindle, N. K. Reay, J. Sci. Instrum. 44, 360 (1967).
[CrossRef]

Roessler, F. L.

Steudel, A.

A. Steudel, H. Walther, J. Phys. Colloq. (Paris) C2, 28, Suppl. 3–4, 255 (1967).

Walther, H.

A. Steudel, H. Walther, J. Phys. Colloq. (Paris) C2, 28, Suppl. 3–4, 255 (1967).

Appl. Opt. (2)

Automatismes (1)

C. Huron, P. Miche, P. Laforie, Automatismes XX (11–12), 430 (1975).

J. Opt. Soc. Am. (2)

J. Phys. Colloq. (Paris) C2 (1)

A. Steudel, H. Walther, J. Phys. Colloq. (Paris) C2, 28, Suppl. 3–4, 255 (1967).

J. Rech. CNRS (1)

H. Chantrel, J. Rech. CNRS 46, 17 (1959).

J. Sci. Instrum. (1)

P. M. Hindle, N. K. Reay, J. Sci. Instrum. 44, 360 (1967).
[CrossRef]

Nouv. Rev. Opt. (1)

H. Chantrel, J. Andre, D. Merle, Nouv. Rev. Opt. 2, 25 (1971).
[CrossRef]

Rev. Opt. (1)

R. Chabbal, P. Jacquinot, Rev. Opt. 40 (4), 157 (1961).

Rev. Phys. Appl. (1)

H. T. Duong, S. Gerstenkorn, J. M. Helbert, Rev. Phys. Appl. 2, 249 (1967).
[CrossRef]

Other (4)

P. Laforie. Spectromètre intégral à étalon Fabry-Perot pour l’étude à haute résolution dans le domaine visible et proche uv de spectre d’émission, d’absorption et Raman. Thèse Rouen (juin1976).

J. M. Helbert, P. Laforie, P. MicheRev. Phys. Appl.12, in press (1977).
[CrossRef]

P. Miche, Thèse Rouen (1976).

R. Chabbal, Thèse Paris (1957).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Principle of scanning: WR, monochromator function; W, Fabry-Perot function.

Fig. 2
Fig. 2

Principle of the Michelson interferometer and F.P. etalon association: E, chamber; P, Köster prism; B1, reference arm in vacuum; B2, pressure scanned arm; M1M2, mirrors; and FP Fabry-Perot etalon.

Fig. 3
Fig. 3

(a) Variations of the transmitted radiation wavenumber as a function of time of analysis. (b) Variation of the pressure as a function of time of analysis.

Fig. 4
Fig. 4

Scheme of the spectrometer.

Fig. 5
Fig. 5

Red line of low pressure neon lamp and yellow line of low pressure mercury lamp.

Fig. 6
Fig. 6

Yellow line and green line of low pressure mercury lamp.

Fig. 7
Fig. 7

Blue line of low pressure mercury lamp.

Tables (2)

Tables Icon

Table I Definition of the Quantities at the End of an Analysis and Resetting Cycle

Tables Icon

Table II Results of Measurements of the Four Emission Lines: Comparison with the Value σref calculated by the Edlen Formula, λair being taken from tables In Handbook of Physics and Chemistry.

Equations (47)

Equations on this page are rendered with MathJax. Learn more.

2 n e σ = p ,
2 ( n e ) 1 σ 1 = 2 ( n e ) 2 σ 2 = p .
Δ ( n e ) = ( n e ) 1 - ( n e ) 2 = 3.3 mm .
d σ M d t = d σ FP d t .
Φ = α 1 + β 1 cos [ 4 π σ Mi · ( n Mi L - A ) ] ,
2 ( n Mi L - A ) · σ Mi = p .
2 n e σ = p .
n - 1 = r 0 , σ F ( P , θ )
d p = 2 e σ d n ,
d p = 2 r 0 , σ · e · σ · F P ( P , θ ) d P ;
d p = 2 L σ Mi · d n Mi ,
d p = 2 r 0 , Mi · L · σ Mi · F P ( P , θ ) d P ,
d p = r 0 , Mi r 0 , σ · σ Mi σ · L e · d p .
n q - 1 - 1 = r 0 , σ q - 1 F ( P q - 1 , θ ) ,
n q - 1 - 1 = r 0 , σ q F ( P q - 1 , θ ) .
σ q , p q - 1 + X , n q , P q , r 0 , σ q n q - 1 = r 0 , σ q · F ( P q , θ ) .
N q = 2 L · σ Mi · r 0 , Mi [ F ( P q - 1 , θ ) - F ( P q - 1 , θ ) ] ,
N q = 2 L · σ Mi · r 0 , Mi [ F ( P q , θ ) - F ( P q - 1 , θ ) ] .
2 n q - 1 · σ q - 1 · e = p q - 1 ,
2 n q - 1 · σ q · e = p q - 1 .
Δ q σ = σ q - σ q - 1 .
2 n q · σ q · e = p q - 1 + X .
Δ q σ = constant .
n q · σ q = n q - 1 · σ q - 1 + X 2 e .
n q = n q - 1 = = n 1 = n 0 ,
σ q = σ q - 1 + X 2 e n 0 ;
Δ q σ = X 2 e n 0 .
n q - 1 - n q - 1 = n q - n q - 1 .
n q - n q - 1 = X 2 e σ q .
n q - 1 - n q - 1 = n q - n q - 1 = X 2 ( σ 0 + q Δ q σ ) e .
r 0 , σ q F ( P q , θ ) = r 0 , σ q - 1 F ( P q - 1 , θ ) = = r 0 , σ 0 · F ( P 0 , θ ) = K .
N = 2 L · σ Mi · r 0 , Mi · F ( P 0 , θ ) .
N Mi = X L e .
K = r 0 , σ 0 · F ( P 0 , θ ) = X 2 e σ Mi · r 0 , σ 0 · N r 0 , Mi · N Mi .
K = X Δ σ 0 σ Mi · r 0 , σ 0 · N r 0 , Mi · N Mi .
Δ q σ = X Δ σ 0 n 0 = X Δ σ 0 1 + K .
q - 1 = integer ( σ - σ 0 Δ q σ ) ,
σ q - 1 = σ 0 + ( q - 1 ) Δ q σ .
n q - n q - 1 = r 0 , σ q [ F ( P q , θ ) - F ( P q - 1 , θ ) ] = X 2 σ q e ,
N q = N Mi · r 0 , Mi r 0 , σ q · σ Mi σ q .
F ( P q - 1 , θ ) - F ( P q , θ ) = K [ 1 r 0 , σ q - 1 - 1 r 0 , σ q ] ,
N q = N q + r 0 , σ 0 · N · [ 1 r 0 , σ q - 1 - 1 r 0 , σ q ] .
N q D = i = 1 i = q - 1 ( N i - N i ) = r 0 , σ 0 · N [ 1 r 0 , σ 0 - 1 r 0 , σ q - 1 ] .
N q F = N q D + N q = N q + r 0 , σ 0 · N [ 1 r 0 , σ 0 - 1 r 0 , σ q ] .
α = f ( σ ) .
r 0 , σ = 10 - 8 [ 6497.378 + 3 073 864.9 144 - σ 2 ] .
F ( P , T ) = 10 - 6 P 0 T P T 0 · 1 - P 0 ( 317.60 - T 0 ) × 10 - 5 1 - P ( 317.60 - T ) × 10 - 5 .

Metrics