Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ponder, “Osmotic Behavior of Red Blood Cells and Ghosts,” in Medical Physics, Vol. 3, O. Glasser, Ed. (Year Book Publications, Chicago, 1960), pp. 95–99.
  2. G. A. Jamieson, T. J. Breenwalt, Eds., Red Cell Membrane (Lippincott, Philadelphia, 1969).
  3. R. Barer, S. Joseph, Q. J. Microsc. Sci. 95, 399 (1954).
  4. I. M. Glynn, “The Ionic Permeability of the Red Cell Membrane,” in Progress in Biophysics and Biophysical Chemistry, Vol. 8, J. A. U. Buttler, B. Katz, Eds. (Pergamon, Elmsford, N.Y., 1957), pp. 241–307.
  5. A. L. Aden, M. Kerker, J. Appl. Phys. 22, 1242 (1951).
    [CrossRef]
  6. A. Brunsting, P. F. Mullaney, Appl. Opt. 11, 675 (1972).
    [CrossRef] [PubMed]
  7. M. Kerker, J. P. Kratohvil, E. Matijevic, J. Opt. Soc. Am. 52, 551 (1962).
    [CrossRef]
  8. Rayleigh, Proc. Roy. Soc. A94, 296 (1918).
  9. P. F. Mullaney, R. J. Fiel, Appl. Opt. 15, 310 (1976).
    [CrossRef] [PubMed]
  10. Equation (3) of Ref. 9 should read α = πd/λ, where λ is the illumination wavelength in the suspending medium.

1976

1972

1962

1954

R. Barer, S. Joseph, Q. J. Microsc. Sci. 95, 399 (1954).

1951

A. L. Aden, M. Kerker, J. Appl. Phys. 22, 1242 (1951).
[CrossRef]

1918

Rayleigh, Proc. Roy. Soc. A94, 296 (1918).

Aden, A. L.

A. L. Aden, M. Kerker, J. Appl. Phys. 22, 1242 (1951).
[CrossRef]

Barer, R.

R. Barer, S. Joseph, Q. J. Microsc. Sci. 95, 399 (1954).

Brunsting, A.

Fiel, R. J.

Glynn, I. M.

I. M. Glynn, “The Ionic Permeability of the Red Cell Membrane,” in Progress in Biophysics and Biophysical Chemistry, Vol. 8, J. A. U. Buttler, B. Katz, Eds. (Pergamon, Elmsford, N.Y., 1957), pp. 241–307.

Joseph, S.

R. Barer, S. Joseph, Q. J. Microsc. Sci. 95, 399 (1954).

Kerker, M.

Kratohvil, J. P.

Matijevic, E.

Mullaney, P. F.

Ponder, E.

E. Ponder, “Osmotic Behavior of Red Blood Cells and Ghosts,” in Medical Physics, Vol. 3, O. Glasser, Ed. (Year Book Publications, Chicago, 1960), pp. 95–99.

Rayleigh,

Rayleigh, Proc. Roy. Soc. A94, 296 (1918).

Appl. Opt.

J. Appl. Phys.

A. L. Aden, M. Kerker, J. Appl. Phys. 22, 1242 (1951).
[CrossRef]

J. Opt. Soc. Am.

Proc. Roy. Soc.

Rayleigh, Proc. Roy. Soc. A94, 296 (1918).

Q. J. Microsc. Sci.

R. Barer, S. Joseph, Q. J. Microsc. Sci. 95, 399 (1954).

Other

I. M. Glynn, “The Ionic Permeability of the Red Cell Membrane,” in Progress in Biophysics and Biophysical Chemistry, Vol. 8, J. A. U. Buttler, B. Katz, Eds. (Pergamon, Elmsford, N.Y., 1957), pp. 241–307.

E. Ponder, “Osmotic Behavior of Red Blood Cells and Ghosts,” in Medical Physics, Vol. 3, O. Glasser, Ed. (Year Book Publications, Chicago, 1960), pp. 95–99.

G. A. Jamieson, T. J. Breenwalt, Eds., Red Cell Membrane (Lippincott, Philadelphia, 1969).

Equation (3) of Ref. 9 should read α = πd/λ, where λ is the illumination wavelength in the suspending medium.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

The concentric sphere model for scattering from a red blood cell ghost. The inner sphere, corresponding to the interior of the cell, has a size parameter α = 2πa/λ, where a is the radius of the inner sphere and is the wavelength of the illumination in the suspending medium. The interior of the red blood cell ghost is assumed to be filled with the suspending medium; and, therefore, the relative refractive index of the inner sphere is m1 = 1. The outer sphere, corresponding to the membrane, has a refractive index relative to the surrounding medium of m2 and a size parameter ν = 2πb/3, where b is the outer radius of the sphere. The membrane thickness has a size parameter δ = να = 2π(ba)/λ.

Fig. 2
Fig. 2

Logarithm of the relative scattering intensity I vs scattering angle θ for a concentric sphere with ν = 60, δ = 0.16, and m2 = 1.12, computed using Lorentz-Mie theory with a plotting increment of 0.20°. For an illumination wavelength of approximately 0.52 μm and a suspending medium refractive index of 1.33, these parameters correspond to a 7.5-μm diam sphere with a 100-Å thick membrane.

Tables (1)

Tables Icon

Table I Intensity vs Scattering Angle Data Were Computed for the Parameters Listed in This Tablea

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( θ ) = 2 I o ( 1 + cos 2 θ ) ( m 2 - 1 ) 2 ϕ 6 k 2 R 2 · { ( sin ν ϕ - ν ϕ cos ν ϕ ) - [ sin ( ν - δ ) ϕ - ( ν - δ ) ϕ cos ( ν - δ ) ϕ ] } 2 ,
δ / ( 2 ν ) 1 ,
( δ ϕ ) 2 / 6 1 ,
( δ ϕ cot ν ϕ ) / 2 1 ,
I ( θ ) = I o ( 1 + cos 2 θ ) k 4 V 2 ( m 2 - 1 ) 2 8 π 2 R 2 [ sin ( 2 ν sin θ / 2 ) 2 ν sin θ / 2 ] 2 ,

Metrics